Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-assisted therapy

07.05.2010
More targeted drug development thanks to systems biology – scientists at the SBMC 2010 in Freiburg explain how this works

Systems biology has finally come of age. Evidence for this is the third Conference on Systems Biology of Mammalian Cells (SBMC), which will take place on June 3-5, 2010 at the Concert Hall Freiburg (Konzerthaus) under the auspices of Prof. Dr. Annette Schavan, German Federal Minister of Education and Research. HepatoSys/Virtual Liver, the network for systems biology of the liver, will host the conference and the Federal Ministry of Education and Research (BMBF) has provided funding.

For three days experts from all over the world will have the opportunity to exchange knowledge in the field of systems-biological analysis of processes in mammalian cells. But the focus will not only be on the newest technologies and revolutionary concepts: scientists will also present how medicine and pharmaceutical research already benefit from systems biology today – in particular, from the development of new and reliable drugs.

A model to support decision-making
Systems biology investigates biological processes at the system level. It takes into account that all activities in a cell, an organ and even in a whole body are linked dynamically with one another. To illustrate these comprehensive networks, systems biology combines quantitative methods from the field of molecular biology with tools and methodologies from mathematics, computer sciences and systems sciences.

Medical-pharmaceutical research benefits above all from the systems-biological analysis of mammalian cells: simulations enable a better understanding of the dynamics of the complex disease promoting mechanisms and facilitate the exploration and development of more targeted therapies. The impact of drugs, too, can be simulated with the help of mathematical models, as they provide information on how an active pharmaceutical substance spreads within the body, how fast it metabolizes and, against this background, how it should be dosed. "However, it becomes really exciting at the point when you take the whole to the next higher level and start making decisions with the help of models regarding which pharmaceutical substances should be investigated further and studied, for instance, in clinical trials", Jörg Lippert of Systems Biology & Computational Solutions Bayer Technology Services GmbH in Leverkusen explains. Lippert’s team develops such simulations within the scope of HepatoSys/Virtual Liver.

The computer simplifies the assessment
Before scientists test a pharmaceutical substance in a clinical study, they have already done intensive research on the substance and its activity profile for many years. "Dozens of scientists are involved in this process, they produce unbelievable amounts of data and write reports on thousands of experiments", Lippert says. This provides the basis for experts to decide whether or not to continue further development of a pharmaceutical candidate. In the traditional approach, the basis for this kind of decision-making is years of experience, medicinal chemistry precedent and our understanding of biology. "No one can overlook and evaluate the diversity of scientific data in all its consequences. That is why the computer is an important tool," Lippert says. Skillfully used, systems biology models accumulate the information emerging from years of research and help the decision-makers to interpret it. Thus, with the help of simulations it is possible to predict how effective a candidate pharmaceutical may be, i.e. how many patients are likely ultimately benefit from it. Conversely, the simulations also illustrate the probability of side effects, even for rare and exceptional cases, which in a clinical study might not even be taken into consideration. “In this way, systems-biological models can help to make clinical studies more focused and reliable, reducing time and costs," Lippert summarizes.
Better medicine – especially for children
These models are especially important when it comes to children. According to current EU law and US-American regulations, pharmaceutical firms seeking approval for new medications must also always demonstrate how they plan to check the suitability of a drug for the treatment of children. However, this is especially difficult, as the Bayer researcher explains: "Children are not simply little people, but they differ in their body functions and tissue composition clearly from adults – and these things change when children’s bodies grow and develop." Moreover, certain clinical studies – in which for example, the dosage and tolerability of a pharmaceutical substance is tested on healthy individuals – are prohibited for children for ethical reasons. Systems-biological models help here: They forecast the effect of a pharmaceutical substance on children in different stages of development and so make it possible to evaluate whether and under which conditions a drug will show the expected effect on these little patients.
A solid foundation via basic research and the promotion of young scientists
"The applications in drug development are important results for systems biology. They show clearly that we are on the right path", says Jens Timmer, scientific speaker of the competence network HepatoSys/ and coordinator of the systems biology conference SBMC 2010. Still, he warns against overhasty euphoria: "During the next years, basic researchers from our field must do a lot of work so that systems biology remains on a solid foundation."

Against this background and in cooperation with the BMBF, the MTZ foundation from Erkrath near Dusseldorf promotes the young scientific generation in the field of systems biology. For the second time, three young scientists will be honored during the conference for their outstanding doctoral theses with the MTZ Award for medically oriented systems biology worth a combined total of 5,000 Euros.

The presentation will take place on Friday, June 4, 2010 at 2 pm.
On Saturday, June 5th at 11:45 am Jörg Lippert will speak about the application of systems-biological models to drug development.

Journalists are warmly invited to take part at the conference.

About the SBMC
The third systems biology conference "Conference on Systems Biology of Mammalian Cells (SBMC 2010) will take place on June 3-5, 2010 in Freiburg. It is organized by HepatoSys/Virtual Liver, the German network on systems biology of liver. HepatoSys was initiated in 2004 by the Federal Ministry of Education and Research (BMBF) – for the research of the intracellular processes in liver cells. Since April, 2010 the succession project Virtual Liver aims at understanding these processes at the next higher level: based on the results of HepatoSys, the scientists involved in Virtual Liver have started to examine processes in cell organization up to the whole organ.

Sabine Trunz | idw
Further information:
http://www.sbmc2010.de

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>