Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-assisted therapy

07.05.2010
More targeted drug development thanks to systems biology – scientists at the SBMC 2010 in Freiburg explain how this works

Systems biology has finally come of age. Evidence for this is the third Conference on Systems Biology of Mammalian Cells (SBMC), which will take place on June 3-5, 2010 at the Concert Hall Freiburg (Konzerthaus) under the auspices of Prof. Dr. Annette Schavan, German Federal Minister of Education and Research. HepatoSys/Virtual Liver, the network for systems biology of the liver, will host the conference and the Federal Ministry of Education and Research (BMBF) has provided funding.

For three days experts from all over the world will have the opportunity to exchange knowledge in the field of systems-biological analysis of processes in mammalian cells. But the focus will not only be on the newest technologies and revolutionary concepts: scientists will also present how medicine and pharmaceutical research already benefit from systems biology today – in particular, from the development of new and reliable drugs.

A model to support decision-making
Systems biology investigates biological processes at the system level. It takes into account that all activities in a cell, an organ and even in a whole body are linked dynamically with one another. To illustrate these comprehensive networks, systems biology combines quantitative methods from the field of molecular biology with tools and methodologies from mathematics, computer sciences and systems sciences.

Medical-pharmaceutical research benefits above all from the systems-biological analysis of mammalian cells: simulations enable a better understanding of the dynamics of the complex disease promoting mechanisms and facilitate the exploration and development of more targeted therapies. The impact of drugs, too, can be simulated with the help of mathematical models, as they provide information on how an active pharmaceutical substance spreads within the body, how fast it metabolizes and, against this background, how it should be dosed. "However, it becomes really exciting at the point when you take the whole to the next higher level and start making decisions with the help of models regarding which pharmaceutical substances should be investigated further and studied, for instance, in clinical trials", Jörg Lippert of Systems Biology & Computational Solutions Bayer Technology Services GmbH in Leverkusen explains. Lippert’s team develops such simulations within the scope of HepatoSys/Virtual Liver.

The computer simplifies the assessment
Before scientists test a pharmaceutical substance in a clinical study, they have already done intensive research on the substance and its activity profile for many years. "Dozens of scientists are involved in this process, they produce unbelievable amounts of data and write reports on thousands of experiments", Lippert says. This provides the basis for experts to decide whether or not to continue further development of a pharmaceutical candidate. In the traditional approach, the basis for this kind of decision-making is years of experience, medicinal chemistry precedent and our understanding of biology. "No one can overlook and evaluate the diversity of scientific data in all its consequences. That is why the computer is an important tool," Lippert says. Skillfully used, systems biology models accumulate the information emerging from years of research and help the decision-makers to interpret it. Thus, with the help of simulations it is possible to predict how effective a candidate pharmaceutical may be, i.e. how many patients are likely ultimately benefit from it. Conversely, the simulations also illustrate the probability of side effects, even for rare and exceptional cases, which in a clinical study might not even be taken into consideration. “In this way, systems-biological models can help to make clinical studies more focused and reliable, reducing time and costs," Lippert summarizes.
Better medicine – especially for children
These models are especially important when it comes to children. According to current EU law and US-American regulations, pharmaceutical firms seeking approval for new medications must also always demonstrate how they plan to check the suitability of a drug for the treatment of children. However, this is especially difficult, as the Bayer researcher explains: "Children are not simply little people, but they differ in their body functions and tissue composition clearly from adults – and these things change when children’s bodies grow and develop." Moreover, certain clinical studies – in which for example, the dosage and tolerability of a pharmaceutical substance is tested on healthy individuals – are prohibited for children for ethical reasons. Systems-biological models help here: They forecast the effect of a pharmaceutical substance on children in different stages of development and so make it possible to evaluate whether and under which conditions a drug will show the expected effect on these little patients.
A solid foundation via basic research and the promotion of young scientists
"The applications in drug development are important results for systems biology. They show clearly that we are on the right path", says Jens Timmer, scientific speaker of the competence network HepatoSys/ and coordinator of the systems biology conference SBMC 2010. Still, he warns against overhasty euphoria: "During the next years, basic researchers from our field must do a lot of work so that systems biology remains on a solid foundation."

Against this background and in cooperation with the BMBF, the MTZ foundation from Erkrath near Dusseldorf promotes the young scientific generation in the field of systems biology. For the second time, three young scientists will be honored during the conference for their outstanding doctoral theses with the MTZ Award for medically oriented systems biology worth a combined total of 5,000 Euros.

The presentation will take place on Friday, June 4, 2010 at 2 pm.
On Saturday, June 5th at 11:45 am Jörg Lippert will speak about the application of systems-biological models to drug development.

Journalists are warmly invited to take part at the conference.

About the SBMC
The third systems biology conference "Conference on Systems Biology of Mammalian Cells (SBMC 2010) will take place on June 3-5, 2010 in Freiburg. It is organized by HepatoSys/Virtual Liver, the German network on systems biology of liver. HepatoSys was initiated in 2004 by the Federal Ministry of Education and Research (BMBF) – for the research of the intracellular processes in liver cells. Since April, 2010 the succession project Virtual Liver aims at understanding these processes at the next higher level: based on the results of HepatoSys, the scientists involved in Virtual Liver have started to examine processes in cell organization up to the whole organ.

Sabine Trunz | idw
Further information:
http://www.sbmc2010.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>