Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational Tool Offers New Insight Into Key Biological Processes

06.03.2014

Researchers from North Carolina State University have developed a computational tool designed to guide future research on biochemical pathways by identifying which components in a biological system are related to specific biochemical processes, including those processes responsible for gene expression, cell signaling, stress response, and metabolism.

“Our goal was to identify modules, or functional units, which are critical to the performance of the biochemical pathways that govern a host of biological processes,” says Dr. Cranos Williams, an assistant professor of electrical and computer engineering at NC State and senior author of a paper describing the work.

“For example, a car has lots of modules – the parts that make it go, the parts that make it stop, the parts that let you steer, etc. If you understand those modules, you understand how the car works. But if you just have a list of parts, that’s not very helpful.

“And what we have right now for many biochemical pathways is essentially just a list of parts – metabolites, biochemical reactions and enzymes that facilitate those reactions – and, in some cases, how those parts change over time. What we need is a clear understanding of which parts work together. That’s where our new algorithm comes in.”

The researchers developed an algorithm that allows them to identify which parts – the metabolites, reactions and enzymes – are related to each other and can be grouped into functional modules. The algorithm also identifies whether an individual component plays a role in multiple modules. For example, an enzyme may play a primary role in critical stress response pathways and a secondary role in processes associated with programmed cell maintenance or death.

The algorithm also characterizes how the relationships between different modules and individual components may change over time and under different internal and external conditions.

The input for the algorithm comes from using well-established dynamic models to observe changes in concentrations of metabolites, reactions and enzymes under various conditions. The algorithm then processes that data to establish primary and secondary relationships between all of the constituent parts.

“When modifying biological processes, there are thousands of possible combinations of metabolites, reactions and enzymes for any given biochemical pathway,” Williams says. “Our work should help life scientists narrow down the list of key players in order to target their research efforts on functional groups that are most likely to improve our ability to understand and control important biological processes. This has applications in everything from biomedical research to agriculture to biofuels.”

The paper, “Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering,” is forthcoming from IEEE Transactions on Cybernetics. Lead author of the paper is Dr. Maria de Luis Balaguer, a former Ph.D. student at NC State.

-shipman-

Note to Editors: The study abstract follows.

“Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering”

Authors: Maria A. de Luis Balaguer and Cranos M. Williams, North Carolina State University

Published: forthcoming, IEEE Transactions on Cybernetics

DOI: 10.1109/TCYB.2013.2286679

Abstract: Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

Matt Shipman | EurekAlert!

More articles from Life Sciences:

nachricht How Invasive Plants Influence an Ecosystem
28.07.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>