Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational Tool Offers New Insight Into Key Biological Processes

06.03.2014

Researchers from North Carolina State University have developed a computational tool designed to guide future research on biochemical pathways by identifying which components in a biological system are related to specific biochemical processes, including those processes responsible for gene expression, cell signaling, stress response, and metabolism.

“Our goal was to identify modules, or functional units, which are critical to the performance of the biochemical pathways that govern a host of biological processes,” says Dr. Cranos Williams, an assistant professor of electrical and computer engineering at NC State and senior author of a paper describing the work.

“For example, a car has lots of modules – the parts that make it go, the parts that make it stop, the parts that let you steer, etc. If you understand those modules, you understand how the car works. But if you just have a list of parts, that’s not very helpful.

“And what we have right now for many biochemical pathways is essentially just a list of parts – metabolites, biochemical reactions and enzymes that facilitate those reactions – and, in some cases, how those parts change over time. What we need is a clear understanding of which parts work together. That’s where our new algorithm comes in.”

The researchers developed an algorithm that allows them to identify which parts – the metabolites, reactions and enzymes – are related to each other and can be grouped into functional modules. The algorithm also identifies whether an individual component plays a role in multiple modules. For example, an enzyme may play a primary role in critical stress response pathways and a secondary role in processes associated with programmed cell maintenance or death.

The algorithm also characterizes how the relationships between different modules and individual components may change over time and under different internal and external conditions.

The input for the algorithm comes from using well-established dynamic models to observe changes in concentrations of metabolites, reactions and enzymes under various conditions. The algorithm then processes that data to establish primary and secondary relationships between all of the constituent parts.

“When modifying biological processes, there are thousands of possible combinations of metabolites, reactions and enzymes for any given biochemical pathway,” Williams says. “Our work should help life scientists narrow down the list of key players in order to target their research efforts on functional groups that are most likely to improve our ability to understand and control important biological processes. This has applications in everything from biomedical research to agriculture to biofuels.”

The paper, “Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering,” is forthcoming from IEEE Transactions on Cybernetics. Lead author of the paper is Dr. Maria de Luis Balaguer, a former Ph.D. student at NC State.

-shipman-

Note to Editors: The study abstract follows.

“Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering”

Authors: Maria A. de Luis Balaguer and Cranos M. Williams, North Carolina State University

Published: forthcoming, IEEE Transactions on Cybernetics

DOI: 10.1109/TCYB.2013.2286679

Abstract: Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

Matt Shipman | EurekAlert!

More articles from Life Sciences:

nachricht New Technique Maps Elusive Chemical Markers on Proteins
03.07.2015 | Salk Institute for Biological Studies

nachricht New approach to targeted cancer therapy
03.07.2015 | CECAD - Cluster of Excellence at the University of Cologne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>