Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational Tool Offers New Insight Into Key Biological Processes

06.03.2014

Researchers from North Carolina State University have developed a computational tool designed to guide future research on biochemical pathways by identifying which components in a biological system are related to specific biochemical processes, including those processes responsible for gene expression, cell signaling, stress response, and metabolism.

“Our goal was to identify modules, or functional units, which are critical to the performance of the biochemical pathways that govern a host of biological processes,” says Dr. Cranos Williams, an assistant professor of electrical and computer engineering at NC State and senior author of a paper describing the work.

“For example, a car has lots of modules – the parts that make it go, the parts that make it stop, the parts that let you steer, etc. If you understand those modules, you understand how the car works. But if you just have a list of parts, that’s not very helpful.

“And what we have right now for many biochemical pathways is essentially just a list of parts – metabolites, biochemical reactions and enzymes that facilitate those reactions – and, in some cases, how those parts change over time. What we need is a clear understanding of which parts work together. That’s where our new algorithm comes in.”

The researchers developed an algorithm that allows them to identify which parts – the metabolites, reactions and enzymes – are related to each other and can be grouped into functional modules. The algorithm also identifies whether an individual component plays a role in multiple modules. For example, an enzyme may play a primary role in critical stress response pathways and a secondary role in processes associated with programmed cell maintenance or death.

The algorithm also characterizes how the relationships between different modules and individual components may change over time and under different internal and external conditions.

The input for the algorithm comes from using well-established dynamic models to observe changes in concentrations of metabolites, reactions and enzymes under various conditions. The algorithm then processes that data to establish primary and secondary relationships between all of the constituent parts.

“When modifying biological processes, there are thousands of possible combinations of metabolites, reactions and enzymes for any given biochemical pathway,” Williams says. “Our work should help life scientists narrow down the list of key players in order to target their research efforts on functional groups that are most likely to improve our ability to understand and control important biological processes. This has applications in everything from biomedical research to agriculture to biofuels.”

The paper, “Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering,” is forthcoming from IEEE Transactions on Cybernetics. Lead author of the paper is Dr. Maria de Luis Balaguer, a former Ph.D. student at NC State.

-shipman-

Note to Editors: The study abstract follows.

“Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering”

Authors: Maria A. de Luis Balaguer and Cranos M. Williams, North Carolina State University

Published: forthcoming, IEEE Transactions on Cybernetics

DOI: 10.1109/TCYB.2013.2286679

Abstract: Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

Matt Shipman | EurekAlert!

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>