Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational Tool Offers New Insight Into Key Biological Processes

06.03.2014

Researchers from North Carolina State University have developed a computational tool designed to guide future research on biochemical pathways by identifying which components in a biological system are related to specific biochemical processes, including those processes responsible for gene expression, cell signaling, stress response, and metabolism.

“Our goal was to identify modules, or functional units, which are critical to the performance of the biochemical pathways that govern a host of biological processes,” says Dr. Cranos Williams, an assistant professor of electrical and computer engineering at NC State and senior author of a paper describing the work.

“For example, a car has lots of modules – the parts that make it go, the parts that make it stop, the parts that let you steer, etc. If you understand those modules, you understand how the car works. But if you just have a list of parts, that’s not very helpful.

“And what we have right now for many biochemical pathways is essentially just a list of parts – metabolites, biochemical reactions and enzymes that facilitate those reactions – and, in some cases, how those parts change over time. What we need is a clear understanding of which parts work together. That’s where our new algorithm comes in.”

The researchers developed an algorithm that allows them to identify which parts – the metabolites, reactions and enzymes – are related to each other and can be grouped into functional modules. The algorithm also identifies whether an individual component plays a role in multiple modules. For example, an enzyme may play a primary role in critical stress response pathways and a secondary role in processes associated with programmed cell maintenance or death.

The algorithm also characterizes how the relationships between different modules and individual components may change over time and under different internal and external conditions.

The input for the algorithm comes from using well-established dynamic models to observe changes in concentrations of metabolites, reactions and enzymes under various conditions. The algorithm then processes that data to establish primary and secondary relationships between all of the constituent parts.

“When modifying biological processes, there are thousands of possible combinations of metabolites, reactions and enzymes for any given biochemical pathway,” Williams says. “Our work should help life scientists narrow down the list of key players in order to target their research efforts on functional groups that are most likely to improve our ability to understand and control important biological processes. This has applications in everything from biomedical research to agriculture to biofuels.”

The paper, “Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering,” is forthcoming from IEEE Transactions on Cybernetics. Lead author of the paper is Dr. Maria de Luis Balaguer, a former Ph.D. student at NC State.

-shipman-

Note to Editors: The study abstract follows.

“Hierarchical Modularization Of Biochemical Pathways Using Fuzzy-C Means Clustering”

Authors: Maria A. de Luis Balaguer and Cranos M. Williams, North Carolina State University

Published: forthcoming, IEEE Transactions on Cybernetics

DOI: 10.1109/TCYB.2013.2286679

Abstract: Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

Matt Shipman | EurekAlert!

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>