Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computational tool for cancer treatment

01.02.2010
Docking Algorithm EADock allows successful design of new inhibitors for an anti-cancer target

Many human tumors express indoleamine 2,3-dioxygenase (IDO), an enzyme which mediates an immune-escape in several cancer types. Researchers in the Molecular Modeling group at the SIB Swiss Institute of Bioinformatics and Dr. Benoît J. Van den Eynde's group at the Ludwig Institute for Cancer Research Ltd (LICR) Brussels Branch developed an approach for creating new IDO inhibitors by computer-assisted structure-based drug design. The study was presented in the January 2010 online issue of the Journal of Medicinal Chemistry.

The docking algorithm EADock, used for this project, was developed by the Molecular Modeling Group over the last eight years. It provides solutions for the "lock-and-key" problem, wherein the protein active site is regarded as a "lock", which can be fitted with a "key" (usually a small organic molecule) able to regulate its activity. Once an interesting molecule has been obtained, synthesis and laboratory experiments are necessary to confirm or reject the prediction. This algorithm will soon be made available to the scientific community worldwide.

The scientists obtained a high success rate. Fifty percent of the molecules designed in silico were active IDO inhibitors in vitro. Compounds that displayed activities in the low micromolar to nanomolar range, made them suitable for further testing in tumor cell experiments and for in vivo evaluation in mice. If these studies are successful, scientists can begin evaluating these new compounds in patients undergoing cancer-immunotherapy.

According to Olivier Michielin, Assistant Member at the Lausanne Branch of LICR and leader of the SIB Swiss Institute of Bioinformatics Molecular Modeling group, "This is a satisfactory proof of principle showing that computational techniques can produce very effective inhibitors for specific cancer targets with high yield. This is very encouraging for future drug developments in the academic environment."

Dr. Andrew Simpson | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>