Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computation And Genomics Data Drive Bacterial Research Into New Golden Age

09.12.2008
A potent combination of powerful new analysis methods and abundant data from genomics projects is carrying microbiology forward into a new era.

Bacteria in particular are shedding light on fundamental molecular and signalling processes of interest not just within microbiology, but across the whole spectrum of life sciences embracing higher organisms, including plants and vertebrates.

Medical research will benefit through improved knowledge of how bacteria behave when inside host organisms such as humans, both in benevolent symbiotic relationships and when causing infectious diseases such as TB.

But the greatest immediate interest in the field lies in the huge potential created by new methods for probing fundamental mechanisms of biology, according to Mark Buttner, who chaired a recent conference organised by the European Science Foundation (ESF) designed to bring together specialists from different fields relevant to bacterial research.

"A feeling emerged from the conference that there has never been a better time to be a microbiologist," said Buttner, who is a project leader at the John Innes Centre, an independent laboratory dedicated to plant and micro-organism research in Norwich, UK. "Rapid progress is coming about as a result of the shear amount of biological information made available by genomics and by the new and very powerful methods that are now available to analyse and predict microbial growth and behaviour systematically and quantitatively."

Already the new methods have led to a number of exciting and unexpected discoveries, some of which were revealed at the ESF conference. These related mostly to signalling processes, both at the molecular level within individual bacteria cells, and also between cells within colonies or biofilms. Some of these processes had been thought to operate only within higher organisms, in particular multi-cellular animals and plants.

For example small intracellular (within cell) signalling molecules called second messengers play a much bigger role in bacteria than had been thought. These molecules are called second messengers because they generate signals inside a cell in response to a primary external signal coming from the outside environment, such as an attack by a host immune system. As Buttner noted, second messengers were known to play an important role in complex eukaryotes, for example in controlling processes as important as vision and smell in animals. But the full role of such molecules in controlling bacterial physiology is only just being appreciated.

Even though bacteria are single celled organisms, they engage in complex relationships within communities, for example in biofilms where the cells generate a collective protective coating called the extracellular matrix. Second messengers are now being found to play a major role not just within free-living cells, but also in maintaining these communities, particularly in the face of environmental insults, such as action of a host immune system, or indeed of an antibiotic drug. Knowledge of how second messengers operate could therefore help combat bacterial infections involving biofilms, such as orthodontal disease and TB.

The conference also included presentations of fresh insights into the critical symbiotic relationships between bacteria and plants. Some plants rely on bacteria to fix the nitrogen they need for the manufacture of critical compounds, primarily proteins, from the air, rather than from nitrates they obtain in the soil. One talk by Eva Kondorosi from the Institut des Sciences du Végétal in Gif sur Yvette in France, showed that the process by which the Rhizobium bacteria in legume root nodules adapt to their nitrogen fixing role is induced, at least in part, by small peptides (proteins) made by the plant which target the bacteria in the nodule.

The ESF conference also highlighted the benefits of cross fertilisation with disciplines such as mathematics, physics and computation, that are now increasingly involved in microbiology. For example Michael Elowitz, an applied physicist from the California Institute of Technology (Caltech), showed that frequency modulation, a technique better known for its role in transmission of FM radio signals or digital data, was actually used in micro-organisms such as yeast and bacteria to orchestrate expression of many genes simultaneously involved in a particular process or pathway. Essentially the frequency of movement of a single factor initiating coordinated expression of multiple genes in turn determines the level of expression within a wide range, enabling a flexible response to different situations.

Apart from bringing together experts from different fields to reveal new insights like the role of frequency modulation in gene expression, the ESF conference also achieved its other major objective of sustaining momentum in the field by establishing BacNet as an ongoing biannual series of meetings in Europe with a similar status and quality to the Gordon conferences on microbiology in the USA. The next BACNET meeting is in planning and is likely to be held at the same location in September 2010.

The ESF research conference BACNET/08 was held in Sant Feliu de Guixols in Spain during September 2008.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/esf-conferences/details/2008/confdetail211.html?conf=211&year=2008

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>