Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computation And Genomics Data Drive Bacterial Research Into New Golden Age

09.12.2008
A potent combination of powerful new analysis methods and abundant data from genomics projects is carrying microbiology forward into a new era.

Bacteria in particular are shedding light on fundamental molecular and signalling processes of interest not just within microbiology, but across the whole spectrum of life sciences embracing higher organisms, including plants and vertebrates.

Medical research will benefit through improved knowledge of how bacteria behave when inside host organisms such as humans, both in benevolent symbiotic relationships and when causing infectious diseases such as TB.

But the greatest immediate interest in the field lies in the huge potential created by new methods for probing fundamental mechanisms of biology, according to Mark Buttner, who chaired a recent conference organised by the European Science Foundation (ESF) designed to bring together specialists from different fields relevant to bacterial research.

"A feeling emerged from the conference that there has never been a better time to be a microbiologist," said Buttner, who is a project leader at the John Innes Centre, an independent laboratory dedicated to plant and micro-organism research in Norwich, UK. "Rapid progress is coming about as a result of the shear amount of biological information made available by genomics and by the new and very powerful methods that are now available to analyse and predict microbial growth and behaviour systematically and quantitatively."

Already the new methods have led to a number of exciting and unexpected discoveries, some of which were revealed at the ESF conference. These related mostly to signalling processes, both at the molecular level within individual bacteria cells, and also between cells within colonies or biofilms. Some of these processes had been thought to operate only within higher organisms, in particular multi-cellular animals and plants.

For example small intracellular (within cell) signalling molecules called second messengers play a much bigger role in bacteria than had been thought. These molecules are called second messengers because they generate signals inside a cell in response to a primary external signal coming from the outside environment, such as an attack by a host immune system. As Buttner noted, second messengers were known to play an important role in complex eukaryotes, for example in controlling processes as important as vision and smell in animals. But the full role of such molecules in controlling bacterial physiology is only just being appreciated.

Even though bacteria are single celled organisms, they engage in complex relationships within communities, for example in biofilms where the cells generate a collective protective coating called the extracellular matrix. Second messengers are now being found to play a major role not just within free-living cells, but also in maintaining these communities, particularly in the face of environmental insults, such as action of a host immune system, or indeed of an antibiotic drug. Knowledge of how second messengers operate could therefore help combat bacterial infections involving biofilms, such as orthodontal disease and TB.

The conference also included presentations of fresh insights into the critical symbiotic relationships between bacteria and plants. Some plants rely on bacteria to fix the nitrogen they need for the manufacture of critical compounds, primarily proteins, from the air, rather than from nitrates they obtain in the soil. One talk by Eva Kondorosi from the Institut des Sciences du Végétal in Gif sur Yvette in France, showed that the process by which the Rhizobium bacteria in legume root nodules adapt to their nitrogen fixing role is induced, at least in part, by small peptides (proteins) made by the plant which target the bacteria in the nodule.

The ESF conference also highlighted the benefits of cross fertilisation with disciplines such as mathematics, physics and computation, that are now increasingly involved in microbiology. For example Michael Elowitz, an applied physicist from the California Institute of Technology (Caltech), showed that frequency modulation, a technique better known for its role in transmission of FM radio signals or digital data, was actually used in micro-organisms such as yeast and bacteria to orchestrate expression of many genes simultaneously involved in a particular process or pathway. Essentially the frequency of movement of a single factor initiating coordinated expression of multiple genes in turn determines the level of expression within a wide range, enabling a flexible response to different situations.

Apart from bringing together experts from different fields to reveal new insights like the role of frequency modulation in gene expression, the ESF conference also achieved its other major objective of sustaining momentum in the field by establishing BacNet as an ongoing biannual series of meetings in Europe with a similar status and quality to the Gordon conferences on microbiology in the USA. The next BACNET meeting is in planning and is likely to be held at the same location in September 2010.

The ESF research conference BACNET/08 was held in Sant Feliu de Guixols in Spain during September 2008.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/esf-conferences/details/2008/confdetail211.html?conf=211&year=2008

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>