Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Comprehensive Analysis Sheds Light on the Origin of Cetaceans

30.09.2009
When the ancestors of living cetaceans—whales, dolphins and porpoises—first dipped their toes into water, a series of evolutionary changes were sparked that ultimately nestled these swimming mammals into the larger hoofed animal group.

But what happened first, a change from a plant-based diet to a carnivorous diet, or the loss of their ability to walk? A new paper published this week in PLoS One resolves this debate using a massive data set of the morphology, behavior, and genetics of living and fossil relatives.

Cetacean ancestors probably moved into water before changing their diet (and their teeth) to include carnivory; Indohyus, a 48-million year-old semi-aquatic herbivore, and hippos fall closest to cetaceans when the evolutionary relationships of the larger group are reconstructed.

“If you only had living taxa to figure out relationships within this group of animals, you would miss a large amount of diversity and part of the picture of what is going on,” says Michelle Spaulding, lead author of the study and a graduate student affiliated with the American Museum of Natural History. “Indohyus is interesting because this fossil combines an herbivore’s dentition with adaptations such as ear bones that are adapted for hearing under water and are traditionally associated with whales only.”

The origin of whales, dolphins, and porpoises—with their highly modified legs and lack of hair—has long been a quandary for mammalogists. About 60 years ago, researchers first suggested that cetaceans were related to plant-eating ungulates, specifically to even-toed, artiodactyl mammals like sheep, antelope and pigs. In other words, carnivorous killer whales and fish-eating dolphins were argued to fit close to the herbivorous hoofed animal group. More recent genetic research found that among artiodactyls, hippos are the cetaceans’ closest living relatives.

Because no one would ever link hippos and whales based on their appearance, fossil evidence became an important way to determine the precise evolutionary steps that cetacean ancestors took. Traditionally, the origin of whales was linked to the mesonychids, an extinct group of carnivores that had singly-hoofed toes. The recent discovery of Indohyus, a clearly water-adapted herbivore, complicates this picture (as new fossils often do) because of ear bones similar to those of modern cetaceans, which are theorized to help the animal have heard better while under the water.

To tease apart different potential evolutionary histories (whether carnivory or water adaptations occurred first; the mesonychid or Indohyus relatedness ideas), Spaulding and colleagues mapped the evolutionary relationships among more than 80 living and fossil taxa (in other words, species and/or genera). These taxa were scored for 661 morphological and behavioral characters (such as presence of hair or the shape of and ankle bone). Forty-nine new DNA sequences from five nuclear genes were also added to the mix of more than 47,000 characters; both morphological and genetic data build on previous analyses by authors Maureen O’Leary of Stony Brook University and John Gatesy of University of California at Riverside. In addition, Indohyus, carnivores (dogs and cats), and an archaic group of mea-eating mammals called creodonts were included.

The team found that the least complex evolutionary tree places Indohyus and similar fossils close to whales, while mesonychids are more distantly related. Hippos remain the closest living relatives. These results suggest that cetacean ancestors transitioned to water before becoming carnivorous but that the meat-eating diet developed while these ancestors could still walk on land.

“How do you put flesh and movement onto a fossil?” asks author O’Leary. “The earliest stem whale probably ate prey in water while still being able to walk on land. Indohyus has some adaptations for hearing under water but also ate plants, while Ambulocetus (a walking whale that lived about 50 million years ago) seems to have been carnivorous.”

“There is deep conflict in the evolutionary tree,” says Spaulding. “The backbone of the tree is robust and stable, but you have these fairly large clades that move around relative to this backbone (Indohyus and mesonychids) We need to really re-examine characters carefully and see what suite of traits are the truly derived in different taxa to fully resolve this tree.”

This research was funded by separate National Science Foundation grants to all three authors.

Donna Bannon | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>