Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound stimulates tumor-fighting protein in cancer therapy

07.02.2013
A compound that stimulates the production of a tumor-fighting protein may improve the usefulness of the protein in cancer therapy, according to a team of researchers.

TRAIL is a natural anti-tumor protein that suppresses tumor development during immune surveillance -- the immune system's process of patrolling the body for cancer cells. This process is lost during cancer progression, which leads to uncontrolled growth and spread of tumors.

The ability of TRAIL to initiate cell death selectively in cancer cells has led to ongoing clinical trials with artificially created TRAIL or antibody proteins that mimic its action. Use of the TRAIL protein as a drug has shown that it is safe, but there have been some issues, including stability of the protein, cost of the drug, and the ability of the drug to distribute throughout the body and get into tumors, especially in the brain.

"The TRAIL pathway is a powerful way to suppress tumors but current approaches have limitations that we have been trying to overcome to unleash an effective and selective cancer therapy," said Dr. Wafik El-Deiry, professor of medicine and chief of the hematology/oncology division, Penn State College of Medicine. "The TRAIL biochemical cell death pathway naturally lends itself as a drug target to restore anti-tumor immunity."

Researchers have identified a compound called TRAIL-inducing Compound 10 (TIC10) as a potential solution. TIC10 stimulates the tumor suppression capabilities of TRAIL in both normal and tumor tissues, including in the brain, and induces tumor cell death in mice. They report their findings in the journal Science Translational Medicine.

TIC10 is a small molecule. This organic compound binds to a protein and alters what the protein does.

Stimulation of TRAIL protein is sustained in both tumor and normal cells, with the normal cells contributing to the TIC10-induced cancer cell death through a bystander effect. It is effective in cancer cell samples and cell lines resistant to conventional therapies.

"I was surprised and impressed that we were able to do this," El-Deiry said. "Using a small molecule to significantly boost and overcome limitations of the TRAIL pathway appears to be a promising way to address difficult to treat cancers using a safe mechanism already used in those with a normal effective immune system. This candidate new drug, a first-in-its-class, shows activity against a broad range of tumor types in mice and appears safe at this stage."

New treatments are needed for advanced cancer, as more than half a million people in the United States will die of cancer in 2013.

"We have enough preclinical information to support the rationale for testing this new drug in the clinic," El-Deiry said.

TIC10 seems to be nontoxic to normal cells or mice even at doses 10 times higher that an observed therapeutic dose. However, more research needs to be completed to satisfy FDA requirements prior to initiation of clinical testing.

Other researchers are Joshua E. Allen, David T. Dicker, Akshal S. Patel, Nathan G. Dolloff, Kimberly A. Scata,Wenge Wang, all of Penn State Hershey Cancer Institute; Gabriel Krigsfeld, Patrick A. Mayes, Luv Patel, University of Pennsylvania School of Medicine; Evangelos Messaris, Department of Surgery, Penn State College Medicine; Jun-Ying Zhou and Gen Sheng Wu, Wayne State University School of Medicine.

This study was funded by the American Cancer Society, Penn State Hershey Cancer Institute and the National Institutes of Health.

Matthew Solovey | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>