Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound Found to Kill Lymphoma Cells Surfaced in Computer Model

20.04.2010
A team of scientists has discovered that a small compound, identified by computational chemists at the University of Maryland, Baltimore (UMB), can kill cancer cells of an aggressive form of non-Hodgkin's lymphoma.

The research findings were published April 13 in the journal Cancer Cell. Professors Alexander MacKerell Jr., PhD, and Andrew Coop, PhD, MA, researchers at UMB's Computer-Aided Drug Design (CADD) Center, part of the School of Pharmacy, discovered a small molecule that decouples proteins that contribute to a form of cancer known as diffuse large B-cell lymphoma (DLBCL). The type accounts for as much as 30 percent of newly reported cases of lymphoma.

"This discovery indicates that a small molecule has the potential to be a therapeutic for a very common form of non-Hodgkin lymphoma, which is presently very difficult to treat," said Coop, chair of the School's Department of Pharmaceutical Sciences. "It has huge potential for cancer therapy."

At the CADD Center, of which he is director, MacKerell and team members directed specially designed computer models to find among millions of chemicals those most likely to disrupt protein-to-protein interactions thought to contribute to DLBCL. From about 200 candidates selected from the screen, several - including one labeled simply 79-6 - were identified to inhibit DLBCL. In the laboratories of collaborators Ari Melnick, MD, associate professor, Weill Cornell Medical College, and Gil Privý, PhD, professor, University of Toronto, experiments revealed that 79-6 was nontoxic in animal experiments and could kill human lymphoma cells.

MacKerell said, "We were able to find a small molecule that inhibited the interaction of a transcriptional factor called B-cell lymphoma protein [BCL6] and its partner proteins, which was then shown by our collaborators to be a potential treatment for DLBCL." Transcriptional factor proteins read and interpret the genetic "blueprint" in the DNA, and scientists have associated the BCL6 transcriptional factor with development of large cell lymphomas.

Because the discovery delved into the intimacy of interactions between proteins involved in transcription, MacKerell added, "I think the discovery may lead to a new category of cancer treatments."

The collaboration was typical of CADD efforts in drug discovery studies, the co-authors said. The Center was formally created in 2001 to foster collaborative research among biologists, biophysicists, structural biologists, and computational scientists. The goal is to initiate these collaborations, in turn leading to research projects to discover chemical entities with the potential to be developed into novel therapeutic agents.

According to the Lymphoma Research Foundation Web site, there are more than 60 non-Hodgkin's lymphomas (NHLs). Of these, it says of DLBCL, "Large cell lymphomas are the most common type of lymphoma, comprising about 30 percent (to) 40 percent of NHLs. The median age of those affected is 57, with a range of 10 to 88 years. Although most frequently seen in adults, large cell lymphomas may also be seen in children. These aggressive cancers may arise in lymph nodes or in extranodal sites, including the gastrointestinal tract, testes, thyroid, skin, breast, central nervous system or bone."

Steve Berberich | Newswise Science News
Further information:
http://www.oea.umaryland.edu/

Further reports about: B-cell B-cell lymphoma CADD DLBCL NHLs computer model lymph node lymphoma methanol fuel cells

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>