Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound Found to Kill Lymphoma Cells Surfaced in Computer Model

20.04.2010
A team of scientists has discovered that a small compound, identified by computational chemists at the University of Maryland, Baltimore (UMB), can kill cancer cells of an aggressive form of non-Hodgkin's lymphoma.

The research findings were published April 13 in the journal Cancer Cell. Professors Alexander MacKerell Jr., PhD, and Andrew Coop, PhD, MA, researchers at UMB's Computer-Aided Drug Design (CADD) Center, part of the School of Pharmacy, discovered a small molecule that decouples proteins that contribute to a form of cancer known as diffuse large B-cell lymphoma (DLBCL). The type accounts for as much as 30 percent of newly reported cases of lymphoma.

"This discovery indicates that a small molecule has the potential to be a therapeutic for a very common form of non-Hodgkin lymphoma, which is presently very difficult to treat," said Coop, chair of the School's Department of Pharmaceutical Sciences. "It has huge potential for cancer therapy."

At the CADD Center, of which he is director, MacKerell and team members directed specially designed computer models to find among millions of chemicals those most likely to disrupt protein-to-protein interactions thought to contribute to DLBCL. From about 200 candidates selected from the screen, several - including one labeled simply 79-6 - were identified to inhibit DLBCL. In the laboratories of collaborators Ari Melnick, MD, associate professor, Weill Cornell Medical College, and Gil Privý, PhD, professor, University of Toronto, experiments revealed that 79-6 was nontoxic in animal experiments and could kill human lymphoma cells.

MacKerell said, "We were able to find a small molecule that inhibited the interaction of a transcriptional factor called B-cell lymphoma protein [BCL6] and its partner proteins, which was then shown by our collaborators to be a potential treatment for DLBCL." Transcriptional factor proteins read and interpret the genetic "blueprint" in the DNA, and scientists have associated the BCL6 transcriptional factor with development of large cell lymphomas.

Because the discovery delved into the intimacy of interactions between proteins involved in transcription, MacKerell added, "I think the discovery may lead to a new category of cancer treatments."

The collaboration was typical of CADD efforts in drug discovery studies, the co-authors said. The Center was formally created in 2001 to foster collaborative research among biologists, biophysicists, structural biologists, and computational scientists. The goal is to initiate these collaborations, in turn leading to research projects to discover chemical entities with the potential to be developed into novel therapeutic agents.

According to the Lymphoma Research Foundation Web site, there are more than 60 non-Hodgkin's lymphomas (NHLs). Of these, it says of DLBCL, "Large cell lymphomas are the most common type of lymphoma, comprising about 30 percent (to) 40 percent of NHLs. The median age of those affected is 57, with a range of 10 to 88 years. Although most frequently seen in adults, large cell lymphomas may also be seen in children. These aggressive cancers may arise in lymph nodes or in extranodal sites, including the gastrointestinal tract, testes, thyroid, skin, breast, central nervous system or bone."

Steve Berberich | Newswise Science News
Further information:
http://www.oea.umaryland.edu/

Further reports about: B-cell B-cell lymphoma CADD DLBCL NHLs computer model lymph node lymphoma methanol fuel cells

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>