Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound May Help in Fight Against Antibiotic-Resistant Superbugs

14.02.2012
North Carolina State University chemists have created a compound that makes existing antibiotics 16 times more effective against recently discovered antibiotic-resistant “superbugs.”

These so-called superbugs are actually bacterial strains that produce an enzyme known as New Delhi metallo-â-lactamase (NDM-1). Bacteria that produce this enzyme are practically impervious to antibiotics because NDM-1renders certain antibiotics unable to bind with their bacterial targets. Since NDM-1 is found in Gram-negative bacteria like K. pneumoniae, which causes pneumonia, urinary tract, and other common hospital-acquired infections, it is of particular concern.

“To begin with, there are fewer antibiotic options for treating infections caused by Gram-negative bacteria than for those caused by Gram-positive bacteria,” says Dr. Roberta Worthington, NC State research assistant professor of chemistry. “Gram-negative bacteria with the NDM-1 enzyme effectively neutralize the few weapons we have in our arsenal, making them especially difficult, if not impossible, to treat with existing antibiotic therapy.”

Previously, NC State chemist Dr. Christian Melander had found that a compound derived from a class of molecules known as 2-aminoimidazoles “recharged” existing antibiotics, making them effective against Gram-positive antibiotic-resistant bacteria like the Staphylococcus strain MRSA. So Melander, Worthington and graduate students Cynthia Bunders and Catherine Reed set to work on a variety of the compound that might prove similarly effective against their Gram-negative brethren.

In a paper published in ACS Medicinal Chemistry Letters, Worthington and Melander describe a compound that, when used in conjunction with the antibiotic imipenem, increased the antibiotic’s effectiveness against the antibiotic-resistant K. pneumoniae 16-fold. The researchers believe that these early results are very promising for future treatments.

“We’ve demonstrated that we have the ability to take out the scariest superbug out there,” Melander says. “Hopefully further research will allow us to make the compound even more effective, and make these infections little more than a nuisance.”

The research was funded by the National Institutes of Health and the Jimmy V Foundation. The Department of Chemistry is part of NC State’s College of Physical and Mathematical Sciences.

-peake-

Note to editors: an abstract of the paper follows.

“Small Molecule Suppression of Carbapenem Resistance in NDM-1 Producing Klebsiella pneumoniae”

Authors: Roberta J. Worthington, Cynthia A. Bunders, Catherine S. Reed, and Christian Melander, North Carolina State University

Published: online in ACS Medical Chemistry Letters

Abstract:
The already considerable global public health threat of multidrug-resistant Gram-negative bacteria has become even more of a concern following the emergence of New Delhi metallo-â-lactamase (NDM-1) producing strains of Klebsiella pneumoniae and other Gram-negative bacteria. As an alternative approach to the traditional development of new bactericidal entities, we have identified a 2-aminoimidazole-derived small molecule that acts as an antibiotic adjuvant and is able to suppress resistance of a NDM-1 producing strain of K. pneumoniae to imipenem and meropenem, in addition to suppressing resistance of other â-lactam nonsusceptible K. pneumoniae strains. The small molecule is able to lower carbapenem minimum inhibitory concentrations by up to 16-fold, while exhibiting little bactericidal activity itself.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>