Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Compound May Help in Fight Against Antibiotic-Resistant Superbugs

North Carolina State University chemists have created a compound that makes existing antibiotics 16 times more effective against recently discovered antibiotic-resistant “superbugs.”

These so-called superbugs are actually bacterial strains that produce an enzyme known as New Delhi metallo-â-lactamase (NDM-1). Bacteria that produce this enzyme are practically impervious to antibiotics because NDM-1renders certain antibiotics unable to bind with their bacterial targets. Since NDM-1 is found in Gram-negative bacteria like K. pneumoniae, which causes pneumonia, urinary tract, and other common hospital-acquired infections, it is of particular concern.

“To begin with, there are fewer antibiotic options for treating infections caused by Gram-negative bacteria than for those caused by Gram-positive bacteria,” says Dr. Roberta Worthington, NC State research assistant professor of chemistry. “Gram-negative bacteria with the NDM-1 enzyme effectively neutralize the few weapons we have in our arsenal, making them especially difficult, if not impossible, to treat with existing antibiotic therapy.”

Previously, NC State chemist Dr. Christian Melander had found that a compound derived from a class of molecules known as 2-aminoimidazoles “recharged” existing antibiotics, making them effective against Gram-positive antibiotic-resistant bacteria like the Staphylococcus strain MRSA. So Melander, Worthington and graduate students Cynthia Bunders and Catherine Reed set to work on a variety of the compound that might prove similarly effective against their Gram-negative brethren.

In a paper published in ACS Medicinal Chemistry Letters, Worthington and Melander describe a compound that, when used in conjunction with the antibiotic imipenem, increased the antibiotic’s effectiveness against the antibiotic-resistant K. pneumoniae 16-fold. The researchers believe that these early results are very promising for future treatments.

“We’ve demonstrated that we have the ability to take out the scariest superbug out there,” Melander says. “Hopefully further research will allow us to make the compound even more effective, and make these infections little more than a nuisance.”

The research was funded by the National Institutes of Health and the Jimmy V Foundation. The Department of Chemistry is part of NC State’s College of Physical and Mathematical Sciences.


Note to editors: an abstract of the paper follows.

“Small Molecule Suppression of Carbapenem Resistance in NDM-1 Producing Klebsiella pneumoniae”

Authors: Roberta J. Worthington, Cynthia A. Bunders, Catherine S. Reed, and Christian Melander, North Carolina State University

Published: online in ACS Medical Chemistry Letters

The already considerable global public health threat of multidrug-resistant Gram-negative bacteria has become even more of a concern following the emergence of New Delhi metallo-â-lactamase (NDM-1) producing strains of Klebsiella pneumoniae and other Gram-negative bacteria. As an alternative approach to the traditional development of new bactericidal entities, we have identified a 2-aminoimidazole-derived small molecule that acts as an antibiotic adjuvant and is able to suppress resistance of a NDM-1 producing strain of K. pneumoniae to imipenem and meropenem, in addition to suppressing resistance of other â-lactam nonsusceptible K. pneumoniae strains. The small molecule is able to lower carbapenem minimum inhibitory concentrations by up to 16-fold, while exhibiting little bactericidal activity itself.

Tracey Peake | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>