Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound May Help in Fight Against Antibiotic-Resistant Superbugs

14.02.2012
North Carolina State University chemists have created a compound that makes existing antibiotics 16 times more effective against recently discovered antibiotic-resistant “superbugs.”

These so-called superbugs are actually bacterial strains that produce an enzyme known as New Delhi metallo-â-lactamase (NDM-1). Bacteria that produce this enzyme are practically impervious to antibiotics because NDM-1renders certain antibiotics unable to bind with their bacterial targets. Since NDM-1 is found in Gram-negative bacteria like K. pneumoniae, which causes pneumonia, urinary tract, and other common hospital-acquired infections, it is of particular concern.

“To begin with, there are fewer antibiotic options for treating infections caused by Gram-negative bacteria than for those caused by Gram-positive bacteria,” says Dr. Roberta Worthington, NC State research assistant professor of chemistry. “Gram-negative bacteria with the NDM-1 enzyme effectively neutralize the few weapons we have in our arsenal, making them especially difficult, if not impossible, to treat with existing antibiotic therapy.”

Previously, NC State chemist Dr. Christian Melander had found that a compound derived from a class of molecules known as 2-aminoimidazoles “recharged” existing antibiotics, making them effective against Gram-positive antibiotic-resistant bacteria like the Staphylococcus strain MRSA. So Melander, Worthington and graduate students Cynthia Bunders and Catherine Reed set to work on a variety of the compound that might prove similarly effective against their Gram-negative brethren.

In a paper published in ACS Medicinal Chemistry Letters, Worthington and Melander describe a compound that, when used in conjunction with the antibiotic imipenem, increased the antibiotic’s effectiveness against the antibiotic-resistant K. pneumoniae 16-fold. The researchers believe that these early results are very promising for future treatments.

“We’ve demonstrated that we have the ability to take out the scariest superbug out there,” Melander says. “Hopefully further research will allow us to make the compound even more effective, and make these infections little more than a nuisance.”

The research was funded by the National Institutes of Health and the Jimmy V Foundation. The Department of Chemistry is part of NC State’s College of Physical and Mathematical Sciences.

-peake-

Note to editors: an abstract of the paper follows.

“Small Molecule Suppression of Carbapenem Resistance in NDM-1 Producing Klebsiella pneumoniae”

Authors: Roberta J. Worthington, Cynthia A. Bunders, Catherine S. Reed, and Christian Melander, North Carolina State University

Published: online in ACS Medical Chemistry Letters

Abstract:
The already considerable global public health threat of multidrug-resistant Gram-negative bacteria has become even more of a concern following the emergence of New Delhi metallo-â-lactamase (NDM-1) producing strains of Klebsiella pneumoniae and other Gram-negative bacteria. As an alternative approach to the traditional development of new bactericidal entities, we have identified a 2-aminoimidazole-derived small molecule that acts as an antibiotic adjuvant and is able to suppress resistance of a NDM-1 producing strain of K. pneumoniae to imipenem and meropenem, in addition to suppressing resistance of other â-lactam nonsusceptible K. pneumoniae strains. The small molecule is able to lower carbapenem minimum inhibitory concentrations by up to 16-fold, while exhibiting little bactericidal activity itself.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>