Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound in Celery, Peppers Reduces Age-related Memory Deficits

14.10.2010
A diet rich in the plant compound luteolin reduces age-related inflammation in the brain and related memory deficits by directly inhibiting the release of inflammatory molecules in the brain, researchers report.

Luteolin (LOOT-ee-oh-lin) is found in many plants, including carrots, peppers, celery, olive oil, peppermint, rosemary and chamomile.

The new study, which examined the effects of dietary luteolin in a mouse model of aging, appears in the Journal of Nutrition.

The researchers focused on microglial cells, specialized immune cells that reside in the brain and spinal cord. Infections stimulate microglia to produce signaling molecules, called cytokines, which spur a cascade of chemical changes in the brain. Some of these signaling molecules, the inflammatory cytokines, induce “sickness behavior”: the sleepiness, loss of appetite, memory deficits and depressive behaviors that often accompany illness.

Inflammation in the brain also appears to be a key contributor to age-related memory problems, said University of Illinois animal sciences professor Rodney Johnson, who led the new study. Johnson directs the Division of Nutritional Sciences at Illinois.

“We found previously that during normal aging, microglial cells become dysregulated and begin producing excessive levels of inflammatory cytokines,” he said.

“We think this contributes to cognitive aging and is a predisposing factor for the development of neurodegenerative diseases.”

Johnson has spent nearly a decade studying the anti-inflammatory properties of nutrients and various bioactive plant compounds, including luteolin. Previous studies – by Johnson’s lab and others – have shown that luteolin has anti-inflammatory effects in the body. This is the first study to suggest, however, that luteolin improves cognitive health by acting directly on the microglial cells to reduce their production of inflammatory cytokines in the brain.

The researchers showed that microglial cells that were exposed to a bacterial toxin produced inflammatory cytokines that could kill neurons. When the microglia were exposed to luteolin before they encountered the toxin, however, the neurons lived.

“The neurons survived because the luteolin inhibited the production of neurotoxic inflammatory mediators,” Johnson said.

Exposing only the neurons to luteolin before the experiment had no effect on their survival, the researchers found.

“This demonstrated that luteolin isn’t protecting the neurons directly,” he said. “It’s doing it by affecting the microglial cells.”

The researchers next turned their attention to the effects of luteolin on the brains and behavior of adult (3- to 6-month-old) and aged (2-year-old) mice. The mice were fed a control diet or a luteolin-supplemented diet for four weeks. The researchers assessed their spatial memory and measured levels of inflammatory markers in the hippocampus, a brain region that is important to memory and spatial awareness.

Normally, aged mice have higher levels of inflammatory molecules in the hippocampus and are more impaired on memory tests than younger adult mice. Aged mice on the luteolin-supplemented diet, however, did better on the learning and memory task than their peers, and the levels of inflammatory cytokines in their brains were more like those of the younger adult mice.

“When we provided the old mice luteolin in the diet it reduced inflammation in the brain and at the same time restored working memory to what was seen in young cohorts,” Johnson said.

Studies have shown that plant compounds such as luteolin can get into the brain, Johnson said. “We believe dietary luteolin accesses the brain and inhibits or reduces activation of microglial cells and the inflammatory cytokines they produce. This anti-inflammatory effect is likely the mechanism which allows their working memory to be restored to what it was at an earlier age.”

“These data suggest that consuming a healthy diet has the potential to reduce age-associated inflammation in the brain, which can result in better cognitive health,” he said.

The National Institutes of Health provided funding to support this research.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>