Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Compound in Celery, Peppers Reduces Age-related Memory Deficits

A diet rich in the plant compound luteolin reduces age-related inflammation in the brain and related memory deficits by directly inhibiting the release of inflammatory molecules in the brain, researchers report.

Luteolin (LOOT-ee-oh-lin) is found in many plants, including carrots, peppers, celery, olive oil, peppermint, rosemary and chamomile.

The new study, which examined the effects of dietary luteolin in a mouse model of aging, appears in the Journal of Nutrition.

The researchers focused on microglial cells, specialized immune cells that reside in the brain and spinal cord. Infections stimulate microglia to produce signaling molecules, called cytokines, which spur a cascade of chemical changes in the brain. Some of these signaling molecules, the inflammatory cytokines, induce “sickness behavior”: the sleepiness, loss of appetite, memory deficits and depressive behaviors that often accompany illness.

Inflammation in the brain also appears to be a key contributor to age-related memory problems, said University of Illinois animal sciences professor Rodney Johnson, who led the new study. Johnson directs the Division of Nutritional Sciences at Illinois.

“We found previously that during normal aging, microglial cells become dysregulated and begin producing excessive levels of inflammatory cytokines,” he said.

“We think this contributes to cognitive aging and is a predisposing factor for the development of neurodegenerative diseases.”

Johnson has spent nearly a decade studying the anti-inflammatory properties of nutrients and various bioactive plant compounds, including luteolin. Previous studies – by Johnson’s lab and others – have shown that luteolin has anti-inflammatory effects in the body. This is the first study to suggest, however, that luteolin improves cognitive health by acting directly on the microglial cells to reduce their production of inflammatory cytokines in the brain.

The researchers showed that microglial cells that were exposed to a bacterial toxin produced inflammatory cytokines that could kill neurons. When the microglia were exposed to luteolin before they encountered the toxin, however, the neurons lived.

“The neurons survived because the luteolin inhibited the production of neurotoxic inflammatory mediators,” Johnson said.

Exposing only the neurons to luteolin before the experiment had no effect on their survival, the researchers found.

“This demonstrated that luteolin isn’t protecting the neurons directly,” he said. “It’s doing it by affecting the microglial cells.”

The researchers next turned their attention to the effects of luteolin on the brains and behavior of adult (3- to 6-month-old) and aged (2-year-old) mice. The mice were fed a control diet or a luteolin-supplemented diet for four weeks. The researchers assessed their spatial memory and measured levels of inflammatory markers in the hippocampus, a brain region that is important to memory and spatial awareness.

Normally, aged mice have higher levels of inflammatory molecules in the hippocampus and are more impaired on memory tests than younger adult mice. Aged mice on the luteolin-supplemented diet, however, did better on the learning and memory task than their peers, and the levels of inflammatory cytokines in their brains were more like those of the younger adult mice.

“When we provided the old mice luteolin in the diet it reduced inflammation in the brain and at the same time restored working memory to what was seen in young cohorts,” Johnson said.

Studies have shown that plant compounds such as luteolin can get into the brain, Johnson said. “We believe dietary luteolin accesses the brain and inhibits or reduces activation of microglial cells and the inflammatory cytokines they produce. This anti-inflammatory effect is likely the mechanism which allows their working memory to be restored to what it was at an earlier age.”

“These data suggest that consuming a healthy diet has the potential to reduce age-associated inflammation in the brain, which can result in better cognitive health,” he said.

The National Institutes of Health provided funding to support this research.

Diana Yates | University of Illinois
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>