Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Compound Could Be Alternative Strategy for Preventing HIV Infection

26.01.2010
MU researcher develops the compound EFdA, which is 60,000 times more potent than current drugs

With the help of effective drug therapies, HIV patients are living longer, healthier lives. Now, researchers want to improve these drug therapies and develop alternative preventative strategies, such as vaginal gels and creams that contain the same or related compounds used in treatments for people infected with HIV. A University of Missouri researcher is developing a compound that is more potent and longer-lasting than current HIV therapies.

“This new compound, EFdA, is 60,000 times more potent than any other drug that is currently being used to treat HIV,” said Stefan Sarafianos, assistant professor of microbiology and immunology in the MU School of Medicine and investigator in the Christopher Bond Life Sciences Center. “This compound has a different chemical makeup than other approved therapies and creates an exceptional amount of antiviral activity. EFdA is activated very quickly and stays long in the body to fight the virus and protect from infection.”

When a person is exposed to HIV, the virus invades healthy cells that play an important role in keeping the body’s immune system strong. In order to multiply itself and remain in the body, the HIV virus relies on certain proteins. One protein, known as reverse transcriptase, is the main HIV enzyme responsible for viral replication. Effective HIV drugs control the virus by blocking the functions of these viral proteins.

EFdA is a nucleoside reverse transcriptase inhibitor (NRTIs). NRTIs target reverse transcriptase and can stop the virus from duplicating and spreading. Currently, there are eight clinically approved NRTIs, but they can protect cells for only short periods of time. With EFdA, patients could be protected for two days instead of few hours and would not need to take the drug as often, Sarafianos said.

“Infection is the result of an overwhelming attack of the virus, but if you manage to keep the viral load low, the body has a mechanism to defend itself and clean up the virus on its own,” Sarafianos said. “The goal of our research is to drop the virus to very low or “undetectable” levels. Patients with suppressed viral loads will have increased life expectancy. Not all drugs work with all patients, and new resistant viral strains develop. Therefore, it’s important to keep adding to our possible options for therapy.”

Sarafianos hopes EFdA also can double as a preventative agent in the form of a vaginal gel or cream. This would provide additional protection to women whose partners refuse to use condoms.

Sarafianos collaborates with Michael Parniak, at the University of Pittsburgh and Hiroaki Mitsuya at the National Institutes of Health. Sarafianos’ recent research was published in The Journal of Biological Chemistry.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: EFDA HIV Infection Preventing drug therapies viral protein

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>