Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Compound Could Be Alternative Strategy for Preventing HIV Infection

26.01.2010
MU researcher develops the compound EFdA, which is 60,000 times more potent than current drugs

With the help of effective drug therapies, HIV patients are living longer, healthier lives. Now, researchers want to improve these drug therapies and develop alternative preventative strategies, such as vaginal gels and creams that contain the same or related compounds used in treatments for people infected with HIV. A University of Missouri researcher is developing a compound that is more potent and longer-lasting than current HIV therapies.

“This new compound, EFdA, is 60,000 times more potent than any other drug that is currently being used to treat HIV,” said Stefan Sarafianos, assistant professor of microbiology and immunology in the MU School of Medicine and investigator in the Christopher Bond Life Sciences Center. “This compound has a different chemical makeup than other approved therapies and creates an exceptional amount of antiviral activity. EFdA is activated very quickly and stays long in the body to fight the virus and protect from infection.”

When a person is exposed to HIV, the virus invades healthy cells that play an important role in keeping the body’s immune system strong. In order to multiply itself and remain in the body, the HIV virus relies on certain proteins. One protein, known as reverse transcriptase, is the main HIV enzyme responsible for viral replication. Effective HIV drugs control the virus by blocking the functions of these viral proteins.

EFdA is a nucleoside reverse transcriptase inhibitor (NRTIs). NRTIs target reverse transcriptase and can stop the virus from duplicating and spreading. Currently, there are eight clinically approved NRTIs, but they can protect cells for only short periods of time. With EFdA, patients could be protected for two days instead of few hours and would not need to take the drug as often, Sarafianos said.

“Infection is the result of an overwhelming attack of the virus, but if you manage to keep the viral load low, the body has a mechanism to defend itself and clean up the virus on its own,” Sarafianos said. “The goal of our research is to drop the virus to very low or “undetectable” levels. Patients with suppressed viral loads will have increased life expectancy. Not all drugs work with all patients, and new resistant viral strains develop. Therefore, it’s important to keep adding to our possible options for therapy.”

Sarafianos hopes EFdA also can double as a preventative agent in the form of a vaginal gel or cream. This would provide additional protection to women whose partners refuse to use condoms.

Sarafianos collaborates with Michael Parniak, at the University of Pittsburgh and Hiroaki Mitsuya at the National Institutes of Health. Sarafianos’ recent research was published in The Journal of Biological Chemistry.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: EFDA HIV Infection Preventing drug therapies viral protein

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>