Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Compound Could Be Alternative Strategy for Preventing HIV Infection

26.01.2010
MU researcher develops the compound EFdA, which is 60,000 times more potent than current drugs

With the help of effective drug therapies, HIV patients are living longer, healthier lives. Now, researchers want to improve these drug therapies and develop alternative preventative strategies, such as vaginal gels and creams that contain the same or related compounds used in treatments for people infected with HIV. A University of Missouri researcher is developing a compound that is more potent and longer-lasting than current HIV therapies.

“This new compound, EFdA, is 60,000 times more potent than any other drug that is currently being used to treat HIV,” said Stefan Sarafianos, assistant professor of microbiology and immunology in the MU School of Medicine and investigator in the Christopher Bond Life Sciences Center. “This compound has a different chemical makeup than other approved therapies and creates an exceptional amount of antiviral activity. EFdA is activated very quickly and stays long in the body to fight the virus and protect from infection.”

When a person is exposed to HIV, the virus invades healthy cells that play an important role in keeping the body’s immune system strong. In order to multiply itself and remain in the body, the HIV virus relies on certain proteins. One protein, known as reverse transcriptase, is the main HIV enzyme responsible for viral replication. Effective HIV drugs control the virus by blocking the functions of these viral proteins.

EFdA is a nucleoside reverse transcriptase inhibitor (NRTIs). NRTIs target reverse transcriptase and can stop the virus from duplicating and spreading. Currently, there are eight clinically approved NRTIs, but they can protect cells for only short periods of time. With EFdA, patients could be protected for two days instead of few hours and would not need to take the drug as often, Sarafianos said.

“Infection is the result of an overwhelming attack of the virus, but if you manage to keep the viral load low, the body has a mechanism to defend itself and clean up the virus on its own,” Sarafianos said. “The goal of our research is to drop the virus to very low or “undetectable” levels. Patients with suppressed viral loads will have increased life expectancy. Not all drugs work with all patients, and new resistant viral strains develop. Therefore, it’s important to keep adding to our possible options for therapy.”

Sarafianos hopes EFdA also can double as a preventative agent in the form of a vaginal gel or cream. This would provide additional protection to women whose partners refuse to use condoms.

Sarafianos collaborates with Michael Parniak, at the University of Pittsburgh and Hiroaki Mitsuya at the National Institutes of Health. Sarafianos’ recent research was published in The Journal of Biological Chemistry.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: EFDA HIV Infection Preventing drug therapies viral protein

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>