Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New composite material may restore damaged soft tissue

02.08.2011
Potential uses include facial reconstruction for soldiers' blast injuries

Biomedical engineers at Johns Hopkins have developed a new liquid material that in early experiments in rats and humans shows promise in restoring damaged soft tissue relatively safely and durably.

The material, a composite of biological and synthetic molecules, is injected under the skin, th"set" using light to form a more solid structure, like using cold to set gelatin in a mold. The researchers say the product one day could be used to reconstruct soldier's faces marred by blast injuries.

The Hopkins researchers caution that the material, described in a report in the July 27 issue of Science Translational Medicine, is "promising," but not yet ready for widespread clinical use.

"Implanted biological materials can mimic the texture of soft tissue, but are usually broken down by the body too fast, while synthetic materials tend to be more permanent but can be rejected by the immune system and typically don't meld well with surrounding natural tissue," says Jennifer Elisseeff, Ph.D., Jules Stein Professor of Ophthalmology and director of the Translational Tissue Engineering Center at the Johns Hopkins University School of Medicine. "Our composite material has the best of both worlds, with the biological component enhancing compatibility with the body and the synthetic component contributing to durability."

The researchers created their composite material from hyaluronic acid (HA), a natural component in skin of young people that confers elasticity, and polyethylene glycol (PEG), a synthetic molecule used successfully as surgical glue in operations and known not to cause severe immune reactions. The PEG can be "cross-linked"—or made to form sturdy chemical bonds between many individual molecules—using energy from light, which traps the HA molecules with it. Such cross-linking makes the implant hold its shape and not ooze away from the injection site, Elisseeff says.

To develop the best PEG-HA composite with the highest long-term stability, the researchers injected different concentrations of PEG and HA under the skin and into the back muscle of rats, shone a green LED light on them to "gel" the material, and used magnetic resonance imaging (MRI) to monitor the persistence of the implant over time. The implants were examined at 47 and 110 days with MRIs and removed. Direct measurements and MRIs of the implants showed that the ones created from HA and the highest tested concentration of PEG with HA stayed put and were the same size over time compared to injections of only HA, which shrank over time.

The researchers evaluated the safety and persistence of the PEG-HA implants with a 12-week experiment in three volunteers already undergoing abdominoplasty, or "tummy tucks." Technicians injected about five drops of PEG-HA or HA alone under the belly skin. None of the participants experienced hospitalization, disability or death directly related to the implant, which was about 8 mm long—or about as wide as a pinky fingernail. However, the participants said they sensed heat and pain during the gel setting process. Twelve-weeks after implantation, MRI revealed no loss of implant size in patients. Removal of the implants and inspection of the surrounding tissue revealed mild to moderate inflammation due to the presence of certain types of white blood cells. The researchers said the same inflammatory response was seen in rats, although the types of white blood cells responding to implant differed between the rodents and humans, a difference the researchers attribute to the back muscles— the target tissue in the rats—being different than human belly fat.

"We still have to evaluate the persistence and safety of our material in other types of human tissues, like muscle or less fatty regions under the skin of the face, so we can optimize it for specific procedures," says Elisseeff.

Elisseeff said the team has especially high hopes for the composite's use in people with facial deformities, who endure social and psychological trauma. When rebuilding soft tissue, recreating natural shape often requires multiple surgeries and can result in scarring. "Many of the skin fillers available on the market consisting of HA-like materials used for face lifts are only temporarily effective, and are limited in their ability to resculpt entire areas of the face. Our hope is to develop a more effective product for people, like our war veterans, who need extensive facial reconstruction. "

Other researchers involved in the study are Alexander Hillel, Shimon Unterman, Branden Reid, Jeannine Coburn, Joyce Axelman, Jemin Chae, Qiongyu Guo, Zhipeng Hou, Susumu Mori and Janis Taube also of Johns Hopkins University; Zayna Nahas of Stanford University; Robert Trow and Andrew Thomas of Energist North America; and Serge Lichtsteiner, Damon Sutton, Christine Matheson, Patricia Walker and Nathaniel David of Kythera Biopharmaceuticals.

The research was supported by a grant from Kythera Biopharmaceuticals, which develops cosmetic pharmaceutical products.

Related Stories:

Building Tissues from Scratch: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/news_
events/articles_and_stories/technology/2011_02_Building_Tissues_
From_Scratch.html
Jennifer Elisseeff on developing an artificial cornea: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_

us/scientists/jennifer_elisseeff2.html

Jennifer Elisseeff on her work engineering tissues: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_

us/scientists/jennifer_elisseeff.html

Coaxing Cells, "Joint Repair": http://www.hopkinsmedicine.org/stem_cell_research/coaxing_cells/joint_

repair.html

On the Web:

Jennifer Elisseeff's lab: http://web1.johnshopkins.edu/JLAB/
Department of Biomedical Engineering: http://www.bme.jhu.edu/index.php
Wilmer Eye Institute: http://www.hopkinsmedicine.org/wilmer/
Translational Tissue Engineering Center: http://web1.johnshopkins.edu/ttec/index.php

Science Translational Medicine: http://stm.sciencemag.org/

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>