Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex pathogens: Effects of gastric bacterium Helicobacter pylori on other organs revealed

05.02.2016

Helicobacter pylori, a bacterium colonising the stomach, has a bad reputation: It is said to cause gastritis, stomach ulcers and, in the long run, even cancer. And yet, it seems the bacterium could also have some positive effects. A team of scientists from Graz and New York examined the impact of a Helicobacter infection on the stomach, intestines and lungs over a period of six months. The unexpected findings were published in the current edition of the prestigious journal Cell Reports.

Some two kilogrammes of bacteria live on and in our body. It is not always easy to distinguish between “good” and “bad” bacteria because their complex interactions have barely been explored. This is also true for Helicobacter pylori. “We do know, for example, that in societies where the prevalence of Helicobacter is high, children suffer less frequently from asthma”, says Dr. Sabine Kienesberger of the Institute of Molecular Biosciences at the University of Graz, lead author of the paper in Cell Reports.


Sabine Kienesberger-Feist

Photo: Uni Graz/Lunghammer


The scientists discovered various interesting relationships: “Our investigations have shown that a Helicobacter infection leads to an accumulation of specific T-cells in the lungs. These cells play an important role in our immune system”, Kienesberger says.

The team was particularly surprised to see that a Heliobacter infection also entails changes in the composition of the intestinal flora which can, in turn, stimulate the immune system. The researchers also found shifts in hormonal balance. “The concentration of the ‘hunger hormone’ ghrelin, for example, increased. Excessive production of this hormone stimulates the appetite. Ghrelin is also known to have an impact on the immune system”, Kienesberger adds.

What makes this study so special is the long-term observation of the Helicobacter infection and its effects in the mouse model as a dynamic process over an extended period. Kienesberger: “The early and to some extent contradictory effects on the lungs came as a surprise, even though an increased immune reaction in the stomach was noted only later.” The study provides a sound basis for further research and targeted investigation of the complex interactions of Helicobacter, microbiome and the immune system.

Kienesberger cooperated with colleagues from the University of Graz, the Medical University of Graz, and from New York University School of Medicine for this publication. She carried out the major part of her investigations during her 30-month postdoc programme in New York where she worked in the team of Prof. Dr. Martin Blaser, a pioneer in microbiome research. At the University of Graz she is a member of Univ.-Prof. Dr. Ellen Zechner’s working group. The study was undertaken in the framework of BioTechMed-Graz, the joint research initiative of the University of Graz, the Medical University of Graz and Graz University of Technology.

Publication:
Gastric Helicobacter pylori Infection Affects Local and Distant Microbial Populations and Host Responses
Sabine Kienesberger, Laura M. Cox, Alexandra Livanos, Xue-Song Zhang, Jennifer Chung, Guillermo I. Perez-Perez, Gregor Gorkiewicz, Ellen L. Zechner, and Martin J. Blaser
Cell Reports, February 16, 2016

Contact:
Dr. Sabine Kienesberger-Feist
Institute of Molecular Biosciences at the University of Graz, Austria
Phone: +43 (0)316/380-5505
E-mail: sabine.kienesberger@uni-graz.at

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>