Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex neural circuitry keeps you from biting your tongue

04.06.2014

Similar wiring diagram may be used elsewhere in the brain

Eating, like breathing and sleeping, seems to be a rather basic biological task. Yet chewing requires a complex interplay between the tongue and jaw, with the tongue positioning food between the teeth and then moving out of the way every time the jaw clamps down to grind it up. If the act weren't coordinated precisely, the unlucky chewer would end up biting more tongue than burrito.


In this blue cross-section of a mouse brain, two colors of fluorescent dye trace the premotor neurons that close the jaw and stick out the tongue, revealing how the brain is wired to coordinate these muscles during chewing, drinking, and vocalizing.

Credit: Fan Wang Lab, Duke University

Duke University researchers have used a sophisticated tracing technique in mice to map the underlying brain circuitry that keeps mealtime relatively painless. The study, which appears June 3 in eLife, could lend insight into a variety of human behaviors, from nighttime teeth grinding to smiling or complex vocalizations.

"Chewing is an activity that you can consciously control, but if you stop paying attention these interconnected neurons in the brain actually do it all for you," said Edward Stanek IV, lead study author and graduate student at Duke University School of Medicine. "We were interested in understanding how this all works, and the first step was figuring out where these neurons reside."

Previous mapping attempts have produced a relatively blurry picture of this chewing control center. Researchers know that the movement of the muscles in the jaw and tongue are governed by special neurons called motoneurons and that these are in turn controlled by another set of neurons called premotor neurons. But the exact nature of these connections -- which premotor neurons connect to which motoneurons -- has not been defined.

Senior study author Fan Wang, Ph.D., associate professor of neurobiology and a member of the Duke Institute for Brain Sciences, has been mapping neural circuits in mice for many years. Under her guidance, Stanek used a special form of the rabies virus to trace the origins of chewing movements.

The rabies virus works naturally by jumping backwards across neurons until it has infected the entire brain of its victim. For this study, Stanek used a genetically disabled version of rabies that could only jump from the muscles to the motoneurons, and then back to the premotor neurons. The virus also contained a green or red fluorescent tag, which enabled the researchers to see where it landed after it was done jumping.

Stanek injected these fluorescently labeled viruses into two muscles, the tongue-protruding genioglossus muscle and the jaw-closing masseter muscle. He found that a group of premotor neurons simultaneously connect to the motoneurons that regulate jaw opening and those that trigger tongue protrusion.

Similarly, he found another group that connects to both motoneurons that regulate jaw closing and those responsible for tongue retraction. The results suggest a simple method for coordinating the movement of the tongue and jaw that usually keeps the tongue safe from injury.

"Using shared premotor neurons to control multiple muscles may be a general feature of the motor system," said Stanek. "For other studies on the rest of the brain, it is important to keep in mind that individual neurons can have effects in multiple downstream areas."

The researchers are interested in using their technique to jump even further back in the mouse brain, eventually mapping the circuitry all the way up to the cortex. But first they plan to delve deeper into the connections between the premotor and motoneurons.

"This is just a small step in understanding the control of these orofacial movements," Stanek said. "We only looked at two muscles and there are at least 10 other muscles active during chewing, drinking, and speech. There is still a lot of work to look at these other muscles, and only then can we get a complete picture of how these all work as a unit to coordinate this behavior," said Stanek.

###

The research was supported by grants from the National Institutes of Health (NS077986 and DE019440).

CITATION: "Monosynaptic Premotor Circuit Tracing Reveals Neural Substrates for Oro-motor Coordination," Edward Stanek IV, Steven Chang, Jun Takatoh, Bao-Xia Han, and Fan Wang. eLife, June 3, 2014. DOI: 10.7554/eLife.02511 http://elifesciences.org/content/early/2014/04/30/eLife.02511

Karl Bates | Eurek Alert!
Further information:
http://duke.edu/

Further reports about: Complex circuitry individual movement muscles neurons rabies technique teeth

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>