Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparing genomes of wild and domestic tomato

27.06.2013
You say tomato, I say comparative transcriptomics. Researchers in the U.S., Europe and Japan have produced the first comparison of both the DNA sequences and which genes are active, or being transcribed, between the domestic tomato and its wild cousins.

The results give insight into the genetic changes involved in domestication and may help with future efforts to breed new traits into tomato or other crops, said Julin Maloof, professor of plant biology in the College of Biological Sciences at the University of California, Davis. Maloof is senior author on the study, published June 24 in the journal Proceedings of the National Academy of Sciences.


Researchers can now compare not only the genomes, but all the genes expressed, by domestic and wild tomatoes. L to R: Solanum lycopersicum, and wild relatives S. pimpinellifolium, S. habrochaites and S. pennellii.

Credit: Brad Townsley, UC Davis.

For example, breeding new traits into tomatoes often involves crossing them with wild relatives. The new study shows that a large block of genes from one species of wild tomato is present in domestic tomato, and has widespread, unexpected effects across the whole genome.

Maloof and colleagues studied the domestic tomato, Solanum lycopersicum, and wild relatives S. pennellii, S. habrochaites and S. pimpinellifolium. Comparison of the plants' genomes shows the effects of evolutionary bottlenecks, Maloof noted -- for example at the original domestication in South America, and later when tomatoes were brought to Europe for cultivation.

Among other findings, genes associated with fruit color showed rapid evolution among domesticated, red-fruited tomatoes and green-fruited wild relatives. And S. pennellii, which lives in desert habitats, had accelerated evolution in genes related to drought tolerance, heat and salinity.

New technology is giving biologists the unprecedented ability to look at all the genes in an organism, not just a select handful. The researchers studied not just the plants' DNA but also the messenger RNA being transcribed from different genes. RNA transcription is the process that transforms information in genes into action. If the DNA sequence is the list of parts for making a tomato plant, the messenger RNA transcripts are the step-by-step instructions.

Gene-expression profiling, combined with an understanding of the plants' biology, allows researchers to understand how genes interact to create complex phenotypes, said Neelima Sinha, professor of plant biology at UC Davis and co-author on the paper.

"Genomics has fast-tracked previous gene-by-gene analyses that took us years to complete," she said.

"We could not have done a study like this ten years ago -- certainly not on any kind of reasonable budget," Maloof said. "It opens up a lot of new things we can do as plant scientists."

The study is the result of a collaborative NSF project awarded to Sinha, Maloof and Jie Peng, associate professor of statistics at UC Davis. Additional authors on the paper are: Daniel Koenig, José Jiménez-Gómez, Seisuke Kimura, Daniel Fulop, Daniel Chitwood, 
Lauren Headland, Ravi Kumar, Michael Covington, Upendra Kumar Devisetty, An Tat, Mallorie Taylor-Teeples, Siobhan Brady, all at UC Davis; Takayuki Tohge, Alisdair Fernie, Anthony Bolger and Björn Usadel, all at the Max Planck Institute of Molecular Plant Physiology, Golm, Germany; Korbinian Schneeberger, Stephan Ossowski, Christa Lanz and Detlef Weigel, all at the Max Planck Institute for Developmental Biology, Tübingen, Germany; and Guangyan Xiong and Markus Pauly, both at UC Berkeley.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: DNA DNA sequences Max Planck Institute RNA domestic tomato messenger RNA

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>