Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Comparative genomics reveals molecular evolution of Q fever pathogen

Scientists from the National Institute of Allergy and Infectious Diseases, Texas A&M Health Center, and the Virginia Bioinformatics Institute at Virginia Tech have uncovered genetic clues about why some strains of the pathogen Coxiella burnetii are more virulent than others.

The researchers compared the sequences of four different strains of C. burnetii, an intracellular bacterium that can cause acute and chronic Q fever in humans, to build up a comprehensive picture of the genetic architecture and content of the different genomes. The scientists examined C. burnetii strains of differing virulence to unveil clues on the genetic features associated with pathogenicity.

Q fever is considered one of the most infectious diseases in the world since inhalation of a single bacterium alone is sufficient to kick-start infection. Infection in humans typically results from contact with infected animals such as cattle, goats, and sheep. The C. burnetii bacterium targets macrophages — white blood cells in the body that usually provide protection against invading pathogens. The pathogen has the remarkable ability to replicate in a lysosome-like vacuole of macrophages, an extremely harsh intracellular environment that usually protects the body from infection by breaking down invading pathogens. The chronic form of Q fever in humans is rare but can lead to heart infections that are usually deadly if untreated.

Dr. Robert Heinzen, head of the Coxiella Pathogenesis Section at the National Institute of Allergy and Infectious Disease, remarked: "Our results suggest that mobile genetic elements have played a major role in the evolution and function of the C. burnetii genome. Recombination between insertion sequence elements or jumping genes appears to have brought about large-scale generation of non-functional genes, a change that may be associated with a more pathogenic lifestyle."

In the study, the researchers sequenced the genomes of three strains of the bacteria and made a four-way comparison of C. burnetii genomic sequences. Strain virulence was associated with a smaller genome. The loss of genes was due in part to the formation of pseudogenes, evolutionary remnants of earlier genes that no longer code for functional proteins.

Kelly Williams, research investigator at VBI, commented: "A principle of our and many modern studies was first enunciated in the title of a 1965 paper by Emile Zuckerkandl and Linus Pauling, 'Molecules as documents of evolutionary history'. Genomes are the ultimate molecular documents, filled with stories that fascinate and instruct, and we can now speed-read them."

VBI Executive and Scientific Director Bruno Sobral, a co-author on the paper, remarked: "2009 is the 200th anniversary of the birth of Darwin. That's a very suitable time to step back and think about how new technologies are giving us ever more powerful ways to investigate the history and mechanism of evolution. We hope the work in the current study serves as a resource for both the Coxiella and wider infectious disease research communities interested in the evolution of pathogen virulence."

Dr. Heinzen concluded: "The results of this study provide a solid foundation upon which we can test a number of hypotheses related to C. burnetii gene function and virulence. This information will prove invaluable as we proceed to dissect, at a molecular level, events associated with Q fever pathogenesis"

"Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella" was published in the February issue of Infection and Immunity 77(2): 642-656.

Barry Whyte | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>