Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparative genomics reveals molecular evolution of Q fever pathogen

04.02.2009
Scientists from the National Institute of Allergy and Infectious Diseases, Texas A&M Health Center, and the Virginia Bioinformatics Institute at Virginia Tech have uncovered genetic clues about why some strains of the pathogen Coxiella burnetii are more virulent than others.

The researchers compared the sequences of four different strains of C. burnetii, an intracellular bacterium that can cause acute and chronic Q fever in humans, to build up a comprehensive picture of the genetic architecture and content of the different genomes. The scientists examined C. burnetii strains of differing virulence to unveil clues on the genetic features associated with pathogenicity.

Q fever is considered one of the most infectious diseases in the world since inhalation of a single bacterium alone is sufficient to kick-start infection. Infection in humans typically results from contact with infected animals such as cattle, goats, and sheep. The C. burnetii bacterium targets macrophages — white blood cells in the body that usually provide protection against invading pathogens. The pathogen has the remarkable ability to replicate in a lysosome-like vacuole of macrophages, an extremely harsh intracellular environment that usually protects the body from infection by breaking down invading pathogens. The chronic form of Q fever in humans is rare but can lead to heart infections that are usually deadly if untreated.

Dr. Robert Heinzen, head of the Coxiella Pathogenesis Section at the National Institute of Allergy and Infectious Disease, remarked: "Our results suggest that mobile genetic elements have played a major role in the evolution and function of the C. burnetii genome. Recombination between insertion sequence elements or jumping genes appears to have brought about large-scale generation of non-functional genes, a change that may be associated with a more pathogenic lifestyle."

In the study, the researchers sequenced the genomes of three strains of the bacteria and made a four-way comparison of C. burnetii genomic sequences. Strain virulence was associated with a smaller genome. The loss of genes was due in part to the formation of pseudogenes, evolutionary remnants of earlier genes that no longer code for functional proteins.

Kelly Williams, research investigator at VBI, commented: "A principle of our and many modern studies was first enunciated in the title of a 1965 paper by Emile Zuckerkandl and Linus Pauling, 'Molecules as documents of evolutionary history'. Genomes are the ultimate molecular documents, filled with stories that fascinate and instruct, and we can now speed-read them."

VBI Executive and Scientific Director Bruno Sobral, a co-author on the paper, remarked: "2009 is the 200th anniversary of the birth of Darwin. That's a very suitable time to step back and think about how new technologies are giving us ever more powerful ways to investigate the history and mechanism of evolution. We hope the work in the current study serves as a resource for both the Coxiella and wider infectious disease research communities interested in the evolution of pathogen virulence."

Dr. Heinzen concluded: "The results of this study provide a solid foundation upon which we can test a number of hypotheses related to C. burnetii gene function and virulence. This information will prove invaluable as we proceed to dissect, at a molecular level, events associated with Q fever pathogenesis"

"Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella" was published in the February issue of Infection and Immunity 77(2): 642-656.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>