Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communicative Immune Cells

29.01.2013
SKIN-DEEP COMMUNICATION: MESSENGER SUBSTANCE AND SIGNALLING MOLECULE INFLUENCE THE DEVELOPMENT OF THE SKIN´S IMMUNE CELLS

A signalling molecule known as Axl has been discovered on immune cells of the epidermis. This recently published finding provides new insight into the development of important skin immune cells known as Langerhans cells. These cells fight off invading microorganisms and play a crucial role in our health.

As the research project, funded by the Austrian Science Fund FWF, also discovered, the natural production of the signalling molecule Axl is highly dependent on the messenger substance TGF-beta1. Together, these findings provide a better understanding of how immune cells develop and offer new approaches for the treatment of autoimmune diseases.

Some infections can really "get under your skin". Fortunately, however, this is not always the case, as the skin provides very effective protection against infections - a function for which we have to thank a type of skin cells, known as the Langerhans cells (LCs). These cells are found in the outermost layer of the skin, the epidermis, and on mucous membranes, and provide a first line of defence against invading viruses, bacteria and fungi. A team of researchers at the Medical University of Vienna is currently examining how immune cells develop from haemopoietic or blood-forming stem cells, and recently made some very important discoveries in the process.

SIGNAL EFFECT

A team headed by Prof. Herbert Strobl from the Institute of Immunology has not only demonstrated that a signalling molecule known as Axl occurs on the surface of LCs, but also how this process is controlled by the messenger substance or cytokine transforming growth factor beta 1 (TGF-beta1). Commenting on the significance of this study, Prof. Strobl explains that: "A large number of benign microbes are found on the skin, which are important for human health. The ability to distinguish "good" from "bad" is therefore of critical importance for the LCs - and Axl plays an important role in this process."

Axl is, in fact, a receptor belonging to the family of TAM receptor tyrosine kinases. These messenger molecules have a crucial function in the prevention of undesired inflammatory responses - and are thereby also preventing the immune system from reacting to benign microbes. Finding an explanation for when and how Axl is formed is therefore very important for understanding the development of LCs from stem cells.

The group headed by Prof. Strobl, who recently started at the Institute of Pathophysiology and Immunology at the Medical University of Graz, has now succeeded in showing that precursor LCs form the signalling molecule Axl just a few hours after coming into contact with TGF-beta1. In comparison to the duration of other cell differentiation processes, an astonishingly short time period. In addition, the researchers established that Axl is only produced in cells that go on to differentiate into LCs - and not in precursors that develop into other cell types, for example granulocytes, monocytes or lymphocytes. The scientists also succeeded in determining that Axl is the only receptor of the TAM family synthesised under these conditions.

These findings rapidly indicated to Thomas Bauer, first author of the study, that the effect of TGF-beta1 on Axl production is vital for LC differentiation from precursor cells: A detail that is further substantiated by the fact that the continuous presence of TGF-beta1 is essential throughout the differentiation process to guarantee Axl synthesis.

A SYSTEMATIC APPROACH

These findings have now been published in the prestigious Journal of Experimental Medicine. This study, which is impressive from both a qualitative and quantitative perspective, was made possible by a well-established test system, as Prof. Strobl explains: "Thanks to an in vitro cell culture procedure for LC differentiation from isolated blood stem cells, we can analyse the effects of different molecules during LC differentiation in detail. This is exactly what we did with TGF-beta1."

The importance of the findings of this FWF project extends far beyond the fundamental insights they provide into the development of skin immune cells. Axl´s ability to distinguish between "good" and "bad" also enables it to prevent autoimmune diseases. Which is why these findings just may contribute to the treatment of these diseases in the future.

Original publication: T. Bauer, A. Zagorska, J. Jurkin, N. Yasmin, R. Koffel, S. Richter, B. Gesslbauer, G. Lemke and H. Strobl, Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis. J. Exp. Med. 2012 Vol. 209 No. 11 2033-2047. DOI 10.1084/jem.20120493

Scientific Contact:
Prof. Herbert Strobl
Medical University of Graz
Institute of Pathophysiology and Immunology Heinrichstraße 31a
8010 Graz, Austria
M +43 / 676 / 757 61 95
E herbert.strobl@medunigraz.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing and Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Judith Sandberger | PR&D
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv201301-en.html

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>