Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Communicative Immune Cells


A signalling molecule known as Axl has been discovered on immune cells of the epidermis. This recently published finding provides new insight into the development of important skin immune cells known as Langerhans cells. These cells fight off invading microorganisms and play a crucial role in our health.

As the research project, funded by the Austrian Science Fund FWF, also discovered, the natural production of the signalling molecule Axl is highly dependent on the messenger substance TGF-beta1. Together, these findings provide a better understanding of how immune cells develop and offer new approaches for the treatment of autoimmune diseases.

Some infections can really "get under your skin". Fortunately, however, this is not always the case, as the skin provides very effective protection against infections - a function for which we have to thank a type of skin cells, known as the Langerhans cells (LCs). These cells are found in the outermost layer of the skin, the epidermis, and on mucous membranes, and provide a first line of defence against invading viruses, bacteria and fungi. A team of researchers at the Medical University of Vienna is currently examining how immune cells develop from haemopoietic or blood-forming stem cells, and recently made some very important discoveries in the process.


A team headed by Prof. Herbert Strobl from the Institute of Immunology has not only demonstrated that a signalling molecule known as Axl occurs on the surface of LCs, but also how this process is controlled by the messenger substance or cytokine transforming growth factor beta 1 (TGF-beta1). Commenting on the significance of this study, Prof. Strobl explains that: "A large number of benign microbes are found on the skin, which are important for human health. The ability to distinguish "good" from "bad" is therefore of critical importance for the LCs - and Axl plays an important role in this process."

Axl is, in fact, a receptor belonging to the family of TAM receptor tyrosine kinases. These messenger molecules have a crucial function in the prevention of undesired inflammatory responses - and are thereby also preventing the immune system from reacting to benign microbes. Finding an explanation for when and how Axl is formed is therefore very important for understanding the development of LCs from stem cells.

The group headed by Prof. Strobl, who recently started at the Institute of Pathophysiology and Immunology at the Medical University of Graz, has now succeeded in showing that precursor LCs form the signalling molecule Axl just a few hours after coming into contact with TGF-beta1. In comparison to the duration of other cell differentiation processes, an astonishingly short time period. In addition, the researchers established that Axl is only produced in cells that go on to differentiate into LCs - and not in precursors that develop into other cell types, for example granulocytes, monocytes or lymphocytes. The scientists also succeeded in determining that Axl is the only receptor of the TAM family synthesised under these conditions.

These findings rapidly indicated to Thomas Bauer, first author of the study, that the effect of TGF-beta1 on Axl production is vital for LC differentiation from precursor cells: A detail that is further substantiated by the fact that the continuous presence of TGF-beta1 is essential throughout the differentiation process to guarantee Axl synthesis.


These findings have now been published in the prestigious Journal of Experimental Medicine. This study, which is impressive from both a qualitative and quantitative perspective, was made possible by a well-established test system, as Prof. Strobl explains: "Thanks to an in vitro cell culture procedure for LC differentiation from isolated blood stem cells, we can analyse the effects of different molecules during LC differentiation in detail. This is exactly what we did with TGF-beta1."

The importance of the findings of this FWF project extends far beyond the fundamental insights they provide into the development of skin immune cells. Axl´s ability to distinguish between "good" and "bad" also enables it to prevent autoimmune diseases. Which is why these findings just may contribute to the treatment of these diseases in the future.

Original publication: T. Bauer, A. Zagorska, J. Jurkin, N. Yasmin, R. Koffel, S. Richter, B. Gesslbauer, G. Lemke and H. Strobl, Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis. J. Exp. Med. 2012 Vol. 209 No. 11 2033-2047. DOI 10.1084/jem.20120493

Scientific Contact:
Prof. Herbert Strobl
Medical University of Graz
Institute of Pathophysiology and Immunology Heinrichstraße 31a
8010 Graz, Austria
M +43 / 676 / 757 61 95
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
Copy Editing and Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44

Judith Sandberger | PR&D
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>