Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication without detours

22.09.2014

Certain nerve cells take a shortcut for the transmission of information: signals are not conducted via the cell`s center, but around it like on a bypass road. The previously unknown nerve cell shape is now presented in the journal "Neuron" by a research team from Heidelberg, Mannheim and Bonn.

Nerve cells communicate by using electrical signals. Via widely ramified cell structures—the dendrites—, they receive signals from other neurons and then transmit them over a thin cell extension—the axon—to other nerve cells. Axon and dendrites are usually interconnected by the neuron’s cell body. A team of scientists at the Bernstein Center Heidelberg-Mannheim, Heidelberg University, and the University of Bonn has now discovered neurons in which the axon arises directly from one of the dendrites. Similar to taking a bypass road, the signal transmission is thus facilitated within the cell.


A neuron in which the axon originates at a dendrite. Signals arriving at this dendrites become more efficiently forwarded than signals input elsewhere.

Copyright: Alexei V. Egorov, 2014

“Input signals at this dendrite do not need not be propagated across the cell body,” explains Christian Thome of the Bernstein Center Heidelberg-Mannheim and Heidelberg University, one of the two first authors of the study. For their analyses, the scientists specifically colored the places of origin of axons of so-called pyramidal cells in the hippocampus. This brain region is involved in memory processes. The surprising result: “We found that in more than half of the cells, the axon does not emerge from the cell body, but arises from a lower dendrite,” Thome says.

The researchers then studied the effect of signals received at this special dendrite. For this purpose, they injected a certain form of the neural transmitter substance glutamate into the brain tissue of mice that can be activated by light pulses. A high-resolution microscope allowed the neuroscientists to direct the light beam directly to a specific dendrite. By the subsequent activation of the messenger substance, they simulated an exciting input signal.

“Our measurements indicate that dendrites that are directly connected to the axon, actively propagate even small input stimuli and activate the neuron,” says second first author Tony Kelly, a member of the Sonderforschungsbereich (SFB) 1089 at the University of Bonn. A computer simulation of the scientists predicts that this effect is particularly pronounced when the information flow from other dendrites to the axon is suppressed by inhibitory input signals at the cell body.

“That way, information transmitted by this special dendrite influences the behavior of the nerve cell more than input from any other dendrite,” Kelly says. In a future step, the researchers attempt to figure out which biological function is actually strengthened through the specific dendrite—and what therefore might be the reason for the unusual shape of these neurons.

The Bernstein Center Heidelberg-Mannheim is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

The SFB 1089 ‘Synaptic Micronetworks in Health and Disease’ is a collaborative research centre in Bonn with partners in Israel. Members of the research group investigate how neurons interact within networks, and the translation of neuronal network activity to mammalian and human behavior. This SFB was inaugurated in October 2013 with the support of the German Research Foundation (DFG).

Contact:

Dr. Alexei V. Egorov
Institute of Physiology and Pathophysiology
Medical Faculty of Heidelberg University
Im Neuenheimer Feld 326
69120 Heidelberg
Tel: +49 (0) 6221 544053
Email: alexei.egorov@urz.uni-heidelberg.de

Prof. Dr. med. Andreas Draguhn
Institute of Physiology and Pathophysiology
Medical Faculty of Heidelberg University
Im Neuenheimer Feld 326
69120 Heidelberg
Tel: +49 (0) 6221 544056
Email: andreas.draguhn@physiologie.uni-heidelberg.de

Dr. Tony Kelly
Laboratory of Experimental Epileptology and Cognition Research
University of Bonn Medical Center
Sigmund-Freud Str. 25
53127 Bonn
Tel: +49 (0) 228 6885 276
Email: tony.kelly@ukb.uni-bonn.de

Prof. Dr. med. Heinz Beck
Laboratory of Experimental Epileptology and Cognition Research
University of Bonn Medical Center
Sigmund-Freud Str. 25
53127 Bonn
Tel: +49 (0) 228 6885 270
Email: heinz.beck@ukb.uni-bonn.de

Original publication:

C. Thome, T. Kelly, A. Yanez, C. Schultz, M. Engelhardt, S. B. Camebridge, M. Both, A. Draguhn, H. Beck and A. V. Egorov (2014): Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons. Neuron, 83, 1418-1430.
doi: 10.1016/j.neuron.2014.08.013

siehe auch Kommentar: P. Kaifosh and A. Losonczy (2014). Neuron, 83, 1231-1233.

Weitere Informationen:

http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Draguhn-Andreas-Prof-Dr.1... webpage Andreas Draguhn
http://www.uni-heidelberg.de University Heidelberg
http://www.meb.uni-bonn.de/agBeck Laboratory for Experimental Epileptology, University of Bonn
http://sfb1089.de Sonderforschungsbereich 1089 at University of Bonn
http://www.bccn-heidelberg-mannheim.de Bernstein Center Heidelberg-Mannheim
http://www.nncn.de/en National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>