Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication via calcium wave

27.03.2018

The hormone auxin is a key regulator of plant growth and development. But how it sets these processes in motion has been unclear. Scientists from the University of Würzburg have now uncovered central details.

Based on what we know today, the plant hormone auxin influences all aspects of plant growth and development. It makes corn thrive from germination to harvest, causes trees to grow skyward and date palms to produce sweet fruits. This makes auxin a significant driver of plant biomass creation on our planet. This is already suggested by its name which derives from Greek auxánō, meaning "I grow".


Plants whose direction of growth is switched from vertical to horizontal in experiments have to reorient spatially. The hormone auxin plays an important role in this process.

Photo: Dirk Becker

For this reason, researchers from the fields of agriculture and forestry have been trying to understand the workings of this growth hormone and harness their findings for scientific applications for ages. Even though the chemical structure of auxin was identified as early as in the 1930s, it is still not completely resolved how the hormone gets to its target cells and unfolds its effect there.

On the quest to answer these questions, biophysicist Professor Rainer Hedrich and other Würzburg plant researchers have now achieved a major breakthrough. They present their results in the current issue of the scientific journal Nature Communications.

Microelectrodes shed light on the transport mechanism

From a chemical point of view, auxin is a comparably simple substance. Called indole-3-acetic acid, or IAA for short, in technical language, it is a derivative of tryptophan, an aromatic amino acid. Plants produce the hormone in the shoot apex, for example, and subsequently forward it to the target cells, including the root cells.

"For our latest study, we scrutinized the root hair cells whose development based on polar cell growth depends on the import of auxin," Rainer Hedrich describes the initial situation of the Würzburg team. Julian Dindas, a PhD student at Hedrich's department, used microelectrodes that register the electric voltage of the root hair's cell membrane, the so-called membrane potential, to study the early responses of the cell to a hormone pulse.

Assistance from Freiburg and Nottingham

He found that the membrane potential depolarized depending on the IAA concentration and the duration of the application. This means that the negatively charged indole acetic acid triggered a process which causes positively charged ions to get into the inside of the cell. This process was more pronounced the more positive ions were present on the outside of the cell. "This suggested that the negatively charged indole acetic acid hormone molecule is absorbed into the root hair cell together with an excess amount of positive ions," Hedrich says.

This measurement result automatically raised the next question: Which transporter in the cell membrane is responsible for this? This questions was quickly answered after consulting with the auxin geneticists Professor Klaus Palme from Freiburg and Professor Malcolm Bennett from Nottingham: "From a collection of mutants of the model plant Arabidopsis with an atypical response to the administration of auxin, one special mutant did not exhibit any IAA-mediated root hair depolarization," Hedrich recalls.

A new signal pathway for an 'old' hormone

Additionally, this mutant did not show a temporary increase of the cellular calcium level either, as can normally be observed after IAA-induced depolarization. "This was the proof that the root hair response to auxin is complex and possibly the result of a signal chain," the plant scientist explains.

In fact, the study of additional auxin mutants suggested that both a special receptor complex and a calcium channel were involved. If one component was missing in this triplet consisting of auxin transporter, receptor or calcium channel, there was no cellular response. "We concluded that IAA in the cell prompts the receptor to open the calcium channel, thereby instructing the cell to adjust cell division and elongation to the hormone signal," Hedrich explains.

A signal crosses the root

By micro-injecting IAA directly into the root hair, Julian Dindas also demonstrated that an auxin-treated cell does more than send a calcium signal. Rather, it sets a self-amplifying calcium wave in motion. Examination under a fluorescence microscope revealed that this calcium wave reaches the root tip already within a few minutes.

Not only the root's stem-cell niche is located there, the root tip also accommodates sensors for an auxin-dependent growth of the plant based on gravitation. This becomes evident when looking at wind-thrown trees. "Over time, the trees manage to take root in the soil again and re-straighten the shoot," says Hedrich. This is what makes the matter particularly exciting for the scientists, because "this control centre decides about the fate of differentiating cells and thus about the fate of the root architecture."

Scientists know that different auxin concentrations in cells and their environment assume a key role in these differentiation processes. Previously, however, this aspect was examined more against the background of the hormone's gene regulation impact according to the Würzburg plant scientists. The physiological role of the auxin signal pathway in the call membrane in contrast had been largely unknown.

"Our studies suggest that the local auxin signals can be communicated over long distances using calcium waves in order to generate an auxin signal also in target cells located far away," Hedrich says. Further experiments are planned to determine how this is achieved at the molecular level and how the proteins of the "auxin signalosome" identified by the Würzburg researchers intervene with this scenario.

AUX1-mediated root hair auxin influx governs SCFTIR1/AFB -type Ca2+ signaling; Julian Dindas, Sönke Scherzer, M. Rob G. Roelfsema, Katharina von Meyer, Heike M. Müller, K. A. S. Al-Rasheid, Klaus Palme, Petra Dietrich, Dirk Becker, Malcolm J. Bennett & Rainer Hedrich; Nature Communications; DOI: 10.1038/s41467-018-03582-5

Contact
Prof. Dr. Rainer
Hedrich, Department of Molecular Plant-Physiology and Biophysics - Botany I, Biocenter of the University of Würzburg, T: +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>