Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication across species boundaries by echolocation calls in bats

18.05.2010
Bats can distinguish between calls of their own and different species with their echolocation calls, report scientists of the Max Planck Institute for Ornithology in Seewiesen. This applies even for species closely related and ecologically similar with overlap of call frequency bands (The American Naturalist, May 2010).

As opposed to bird song or the human voice, echolocation calls are primarily used for spatial orientation and search for food and not for communication. Bat species with similar ecological requirements use similar echolocation calls. However, it was recently shown that bats are able to distinguish conspecifics by their individual calls, somewhat similar to how humans can recognize others by voice.

Now, Maike Schuchmann and Björn Siemers of the Max Planck Institute for Ornithology in Seewiesen were able to prove that echolocation calls carry more information than assumed. As humans are able to recognize different languages, bats can not only distinguish their own calls from calls of other species, but also differentiate between different species, even if there is an overlap of call frequency bands.

The scientists set up behavioural experiments with two horseshoe bat species in Bulgaria. They played echolocation calls of the bats’ own species or calls of three different species through ultrasonic loudspeakers and analysed the animals’ reaction. Both bat species hardly made a mistake in their distinction, neither between own and foreign calls nor foreign and foreign calls. “However, the discrimination was easier for the bats when the call frequency bands were clearly separated from their own”, says Maike Schuchmann, first author of the study.

This result is exciting but opens up new questions immediately: ”Follow-up experiments are necessary to test whether the bats indeed use their ability for acoustic species discrimination in the wild”, says Björn Siemers. It could be an advantage for the bats to get out of the way of competitively superior species in their hunting grounds. On the other hand, following a heterospecific with the same roosting requirements may be beneficial for finding new shelters. Research in that direction can deepen our understanding of the sensory and cognitive basis of species interactions on a community level. [MKS/SP]

Original work:
Maike Schuchmann and Björn Siemers:
Behavioral evidence for community-wide species discrimination from echolocation calls in bats
The American Naturalist. Published online May 11, 2010
DOI: 10.1086/652993
Contact:
Dr. Maike Schuchmann
Research Group Sensory Ecology
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 (0)8157 932 - 377
E-mail: schuchmann@orn.mpg.de
Dr. Björn Siemers
Research Group Sensory Ecology
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 (0)8157 932 - 348
E-mail: siemers@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>