Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication across species boundaries by echolocation calls in bats

18.05.2010
Bats can distinguish between calls of their own and different species with their echolocation calls, report scientists of the Max Planck Institute for Ornithology in Seewiesen. This applies even for species closely related and ecologically similar with overlap of call frequency bands (The American Naturalist, May 2010).

As opposed to bird song or the human voice, echolocation calls are primarily used for spatial orientation and search for food and not for communication. Bat species with similar ecological requirements use similar echolocation calls. However, it was recently shown that bats are able to distinguish conspecifics by their individual calls, somewhat similar to how humans can recognize others by voice.

Now, Maike Schuchmann and Björn Siemers of the Max Planck Institute for Ornithology in Seewiesen were able to prove that echolocation calls carry more information than assumed. As humans are able to recognize different languages, bats can not only distinguish their own calls from calls of other species, but also differentiate between different species, even if there is an overlap of call frequency bands.

The scientists set up behavioural experiments with two horseshoe bat species in Bulgaria. They played echolocation calls of the bats’ own species or calls of three different species through ultrasonic loudspeakers and analysed the animals’ reaction. Both bat species hardly made a mistake in their distinction, neither between own and foreign calls nor foreign and foreign calls. “However, the discrimination was easier for the bats when the call frequency bands were clearly separated from their own”, says Maike Schuchmann, first author of the study.

This result is exciting but opens up new questions immediately: ”Follow-up experiments are necessary to test whether the bats indeed use their ability for acoustic species discrimination in the wild”, says Björn Siemers. It could be an advantage for the bats to get out of the way of competitively superior species in their hunting grounds. On the other hand, following a heterospecific with the same roosting requirements may be beneficial for finding new shelters. Research in that direction can deepen our understanding of the sensory and cognitive basis of species interactions on a community level. [MKS/SP]

Original work:
Maike Schuchmann and Björn Siemers:
Behavioral evidence for community-wide species discrimination from echolocation calls in bats
The American Naturalist. Published online May 11, 2010
DOI: 10.1086/652993
Contact:
Dr. Maike Schuchmann
Research Group Sensory Ecology
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 (0)8157 932 - 377
E-mail: schuchmann@orn.mpg.de
Dr. Björn Siemers
Research Group Sensory Ecology
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 (0)8157 932 - 348
E-mail: siemers@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>