Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Communication pathways within proteins may yield new drug targets to stop superbugs

A School of Science at Indiana University-Purdue University Indianapolis biophysicist has developed a new method to identify communication pathways connecting distant regions within proteins.

With this tool, Andrew J. Rader, Ph.D., assistant professor of physics, has identified a mechanism for cooperative behavior within an entire molecule, a finding that suggests that in the future it may be possible to design drugs that target anywhere along the length of a molecule's communication pathway rather than only in a single location as they do today. The discovery holds promise for increasing the likelihood of therapeutic success.

The study, "Correlating Allostery with Rigidity" is published in the current issue of Molecular BioSystems, a journal of the Royal Society of Chemistry.

Microorganisms frequently contain enzymes, protein molecules that carry out most of the important functions of cells, not present in human cells. Blocking these enzymes can stop or kill a harmful invader.

Drugs are often developed to block or restrict the function of such enzymes, thereby treating the underlying infectious disease they convey. These drugs often target specific chemical sites on bacterial or viral enzymes, and alter the enzymes so they no longer function. Unfortunately, microorganisms can evolve enzymes that are impervious to these drugs, resulting in drug resistant organisms.

"With the growth of drug resistant organisms, it is increasingly important that we gain a better understanding of what makes enzymes within cellular proteins do what they do, so that we can develop alternative approaches to targeting these proteins, shutting down enzymes and killing these superbugs," said Rader, first author of the study.

He has found that the "poking" of one spot on the rigid pathway connecting regions within proteins produces communication along the entire pathway, indicating that drugs could be targeted to multiple locations on the pathways that had not developed drug resistance and could travel to where needed. His new method identified more than twice as many communication pathways as previous studies.

To use the analogy of a railroad track, dislocating a single rail, anywhere on the track, effects the entire track as trains cannot travel from one end to the other due to the rail that is out of alignment. Returning the rail to its proper location makes the entire track function normally. In the case of the rigid pathways within proteins, affecting a single chemical locus on the pathway affects the entire pathway.

"We now see in these rigid pathways that we can effect something at a distance. This holds great potential for drug targeting. We can do something at one site on the pathway, where drug resistance is not an issue, and it will affect another, perhaps turning an enzyme off and eliminating drug resistance. It's too early to say whether we can successfully counter tuberculosis, Methicillin-resistant Staphylococcus aureus [MRSA] and others of the growing number of multidrug resistant organisms this way, but it's a promising approach well worth further exploration," said Rader.

This study by Rader, co-authored by graduate student Stephen M. Brown, was funded by the Department of Physics, School of Science at IUPUI.

Mol. BioSyst., 2011, 7, 464-471

The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, behavioral and mathematical sciences. The School is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy. For more information, visit

Cindy Fox Aisen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>