Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common stem cell in heart and lung development explains adaption for life on land

22.07.2013
The evolution of adaptations for life on land have long puzzled biologists – are feathers descendents of dinosaur scales, how did arms and legs evolve from fins, and from what ancient fish organ did the lung evolve?

Biologists have known that the co-development of the cardiovascular and pulmonary systems is a recent evolutionary adaption to life outside of water, coupling the function of the heart with the gas exchange function of the lung. And, the lung is one of the most recent organs to have evolved in mammals and is arguably the most vital for terrestrial life.


Wnt2+ CPPs (green cells) populate multiple cell lineages in the developing lung including airway and vascular smooth muscle. The smooth muscle of the branching airways and large blood vessels are stained in red.

Credit: Edward E. Morrisey, Ph.D., Perelman School of Medicine, University of Pennsylvania

The coordinated maturation of the cells of these two systems is illustrated during embryonic development, when the primitive lung progenitor cells protrude into the primitive cardiac progenitor cells as the two organs develop in parallel to form the cardiopulmonary circulation. However, little is known about the molecular cues guiding this simultaneous development, and how a common progenitor cell for both organs may influence the pathology of such related diseases as pulmonary hypertension.

In a new paper published this week online in Nature, a team from the Perelman School of Medicine, University of Pennsylvania, shows that the pulmonary vasculature, the blood vessels that connect the heart to the lung, develops even in the absence of the lung. Mice in which lung development is inhibited still have pulmonary blood vessels, which revealed to the researchers that cardiac progenitors, or stem cells, are essential for cardiopulmonary co-development.

The Penn team, led by Edward E. Morrisey, PhD, professor of Medicine and Cell and Developmental Biology and scientific director of the Penn Institute for Regenerative Medicine, identified a population of multi-potent CardioPulmonary mesoderm Progenitor cells they named CPPs. The CPPs can be distinguished from many other early embryonic cells by the expression of a well-studied signaling molecule Wnt2.

"We asked if these progenitor cells are capable of generating both heart and lung derivatives," says Morrisey. "Our data show that Wnt2-positive cells exist prior to lung development and help coordinate lung and heart co-development by generating cell types in both tissues."

The issue of how the lung develops and connects to the cardiovascular system has intrigued the Morrisey lab for many years. "It's pretty obvious to anyone who has looked at the anatomy of most terrestrial animals that the heart and lung are intimately linked. This is even reflected in clinical medicine where in many places, including the Perelman School of Medicine, the Division of Cardiovascular Medicine was once referred to as the Division of Cardiopulmonary Medicine," notes Morrisey.

The Morrisey lab began with a couple of simple questions: how do the lung and heart co-develop and what are the critical signals that regulate this process? The breakthrough in this work occurred when the team characterized the expression pattern of the Wnt2 gene.

"Wnt2 is expressed in a unique place in the early embryo -- exactly in between the early heart and foregut tube, where the lung will arise from." This allowed the researchers to create a model system in mice, whose cardiopulmonary anatomy is very similar to humans, and ask whether Wnt2-positive cells could coordinate heart and lung co-development.

Using cell lineage tracing analysis, they showed that Wnt2 cells generate single clones that, in turn, generate both heart and lung tissue, including cardiomyocytes and blood vessel cells such as vascular smooth muscle. Indeed, CPPs are capable of generating the vast majority of early embryonic cell types in the heart and lung. These studies also showed that the different cell lineages within the lung are related. For example, vascular smooth muscle and airway smooth muscle share a common progenitor cell in the lung.

The development of CPPs is regulated by the expression of another well-known protein called hedgehog, which is required for proper connection of the pulmonary vasculature to the heart. These studies show that hedgehog, which is also expressed by early lung progenitor cells, helps to promote CPPs to differentiate into the smooth muscle component of the pulmonary vasculature.

Together, these studies identify a novel population of multi-potent cardiopulmonary progenitors that coordinate heart and lung co-development, which is required for adaptation to terrestrial existence.

The finding that CPPs coordinate lung and heart co-development also has important implications for diseases that affect both organs, such as pulmonary hypertension. It is unclear whether pulmonary hypertension is primarily a lung disease or whether there are also intrinsic defects in the heart or cardiovascular system. The identification of CPPs could provide important insight into pulmonary hypertension and other diseases by identifying a common progenitor cell for both organs. Future studies will focus on whether CPPs exist in the adult cardiopulmonary system and whether they play a role in the response of the lung and heart to injury or disease.

Co-authors are Tien Peng, Ying Tian, Cornelis J. Boogerd, Min Min Lu, Rachel S. Kadzik, Kathleen M. Stewart, all from Penn, and Sylvia M. Evans, University of California, San Diego.

This work was funded by the Heart, Lung and Blood Institute (HL110942, HL100405, HL087825, HL117649) and the American Heart Association Jon DeHaan Myogenesis Center.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>