Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common RNA pathway found in ALS and dementia

01.10.2012
Two proteins previously found to contribute to ALS, also known as Lou Gehrig's disease, have divergent roles. But a new study, led by researchers at the Department of Cellular and Molecular Medicine at the University of California, San Diego School of Medicine, shows that a common pathway links them.

The discovery reveals a small set of target genes that could be used to measure the health of motor neurons, and provides a useful tool for development of new pharmaceuticals to treat the devastating disorder, which currently has no treatment or cure.

Funded in part by the National Institutes of Health and the California Institute for Regenerative Medicine (CIRM), the study will be published in the advance online edition of Nature Neuroscience on September 30.

ALS is an adult-onset neurodegenerative disorder characterized by premature degeneration of motor neurons, resulting in a progressive, fatal paralysis in patients.

The two proteins that contribute to the disease – FUS/TLS and TDP-43 – bind to ribonucleic acid (RNA), intermediate molecules that translate genetic information from DNA to proteins. In normal cells, both TDP-43 and FUS/TLS are found in the nucleus where they help maintain proper levels of RNA. In the majority of ALS patients, however, these proteins instead accumulate in the cell's cytoplasm – the liquid that separates the nucleus from the outer membrane, and thus are excluded from the nucleus, which prevents them from performing their normal duties.

Since the proteins are in the wrong location in the cell, they are unable to perform their normal function, according to the study's lead authors, Kasey R. Hutt, Clotilde Lagier-Tourenne and Magdalini Polymenidou. "In diseased motor neurons where TDP-43 is cleared from the nucleus and forms cytoplasmic aggregates," the authors wrote, "we saw lower protein levels of three genes regulated by TDP-43 and FUS/TLS. We predicted that this, based on our mouse studies, and found the same results in neurons derived from human embryonic stem cells."

In 2011, this team of UC San Diego scientists discovered that more than one-third of the genes in the brains of mice are direct targets of TDP-43, affecting the functions of these genes. In the new study, they compared the impact of the FUS/TLS protein to that of TDP-43, hoping to find a large target overlap.

"Surprisingly, instead we saw a relatively small overlap, and the common RNA targets genes contained exceptionally long introns, or non-coding segments. The set is comprised of genes that are important for synapse function," said principal investigator Gene Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine and the Institute for Genomic Medicine at UC San Diego and a visiting professor at the Molecular Engineering Laboratory in Singapore. "Loss of this common overlapping set of genes is evidence of a common pathway that appears to contribute to motor neuron degeneration."

In an effort to understand the normal function of these two RNA binding proteins, the scientists knocked down the proteins in brains of mice to mimic nuclear clearance, using antisense oligonucleotide technology developed in collaboration with ISIS Pharmaceuticals. The study resulted in a list of genes that are up or down regulated, and the researchers duplicated the findings in human cells.

"If we can somehow rescue the genes from down regulation, or being decreased by these proteins, it could point to a drug target for ALS to slow or halt degeneration of the motor neurons," said Yeo.

These proteins also look to be a central component in other neurodegenerative conditions. For example, accumulating abnormal TDP-43 and FUS/TLS in neuronal cytoplasm has been documented in frontotemporal lobar dementia, a neurological disorder that has been shown to be genetically and clinically linked to ALS, and which is the second most frequent cause of dementia after Alzheimer's disease.

The team was led by Gene Yeo, PhD and Don W. Cleveland, PhD, professor and chair of the UCSD Department of Cellular and Molecular Medicine and head of the Laboratory of Cell Biology at the Ludwig Institute for Cancer Research. Additional contributors include Anthony Q. Vu, Michael Baughn, Stephanie C. Huelga, Kevin M. Clutario, Shuo-Chien Ling, Tiffany Y. Liang and John Ravits, UC San Diego; Curt Mazur, Edward Wancewicz, Aneeza S. Kim, Andy Watt, Sue Freier and Frank Bennett, Isis Pharmaceuticals, Carlsbad, CA; Geoffrey G. Hicks, University of Manitoba, Winnipeg, Canada; and John Paul Donohue and Lily Shiue, UC Santa Cruz.

This work was supported by grants from the US National Institutes of Health (R37NS27036 to Cleveland and K99NS075216 to Polymenidou). Polymenidou is the recipient of a long-term fellowship from the international Human Frontier Science Program Organization. Lagier-Tourenne is the recipient of a Career Development Award from the Muscular Dystrophy Association and the Milton-Safenowitz post-doctoral fellowship from the Amyotrophic Lateral Sclerosis Association. D.W.C. receives salary support from the Ludwig Institute for Cancer Research. Huelga is funded by a US National Science Foundation Graduate Research Fellowship. This work was also supported by grant number R01NS075449 from the US National Institute of Neurological Disorders and Stroke, and was partially supported by grants from the US National Institutes of Health (HG004659 and GM084317) and the California Institute for Regenerative Medicine (RB1-01413 and RB3-05009) to Yeo. Yeo is a recipient of the Alfred P. Sloan Research Fellowship.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>