Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common plants can eliminate indoor air pollutants

06.11.2009
5 super ornamentals identified for cleaner indoor air

Air quality in homes, offices, and other indoor spaces is becoming a major health concern, particularly in developed countries where people often spend more than 90% of their time indoors. Surprisingly, indoor air has been reported to be as much as 12 times more polluted than outdoor air in some areas.

Indoor air pollutants emanate from paints, varnishes, adhesives, furnishings, clothing, solvents, building materials, and even tap water. A long list of volatile organic compounds, or VOCs [including benzene, xylene, hexane, heptane, octane, decane, trichloroethylene (TCE), and methylene chloride], have been shown to cause illnesses in people who are exposed to the compounds in indoor spaces.

Acute illnesses like asthma and nausea and chronic diseases including cancer, neurologic, reproductive, developmental, and respiratory disorders are all linked to exposure to VOCs. Harmful indoor pollutants represent a serious health problem that is responsible for more than 1.6 million deaths each year, according to a 2002 World Health Organization report.

Stanley J. Kays, Department of Horticulture, University of Georgia, was the lead researcher of a study published in HortScience that tested ornamental indoor plants for their ability to remove harmful VOCs from indoor air. According to Kays, some indoor plants have the ability to effectively remove harmful VOCs from the air, and not only have the ability to improve our physical health, but also have been shown to enhance our psychological health. Adding these plants to indoor spaces can reduce stress, increase task performance, and reduce symptoms of ill health.

The ability of plants to remove VOCs is called "phytoremediation". To better understand the phytoremediation capacity of ornamental plants, the research team tested 28 common indoor ornamentals for their ability to remove five volatile indoor pollutants. "The VOCs tested in this study can adversely affect indoor air quality and have a potential to seriously compromise the health of exposed individuals," Kays explained. "Benzene and toluene are known to originate from petroleum-based indoor coatings, cleaning solutions, plastics, environmental tobacco smoke, and exterior exhaust fumes emanating into the building; octane from paint, adhesives, and building materials; TCE from tap water, cleaning agents, insecticides, and plastic products; and alpha-pinene from synthetic paints and odorants."

During the research study, plants were grown in a shade house for eight weeks followed be acclimatization for twelve weeks under indoor conditions before being placed in gas-tight glass jars. The plants were exposed to benzene, TCE, toluene, octane, and alpha-pinene, and air samples were analyzed. The plants were then classified as superior, intermediate, and poor, according to their ability to remove VOCs.

Of the 28 species tested, Hemigraphis alternata (purple waffle plant), Hedera helix (English ivy), Hoya carnosa (variegated wax plant), and Asparagus densiflorus (Asparagus fern) had the highest removal rates for all of the VOCs introduced. Tradescantia pallida (Purple heart plant) was rated superior for its ability to remove four of the VOCs.

The study concluded that simply introducing common ornamental plants into indoor spaces has the potential to significantly improve the quality of indoor air. In addition to the obvious health benefits for consumers, the increased use of indoor plants in both ''green'' and traditional buildings could have a tremendous positive impact on the ornamental plant industry by increasing customer demand and sales.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/5/1377

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>