Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Lab Dye Is a Wonder Drug – for Worms

01.04.2011
Basic Yellow 1, a dye used in neuroscience laboratories around the world to detect damaged protein in Alzheimer’s disease, is a wonder drug for nematode worms.

In a study appearing in the March 30, online edition of Nature, the dye, also known as Thioflavin T, (ThT) extended lifespan in healthy nematode worms by more than 50 percent and slowed the disease process in worms bred to mimic aspects of Alzheimer’s. The research, conducted at the Buck Institute for Research on Aging, could open new ways to intervene in aging and age-related disease.

The study highlights a process called protein homeostasis – the ability of an organism to maintain the proper structure and balance of its proteins, which are the building blocks of life. Genetic studies have long indicated that protein homeostasis is a major contributor to longevity in complex animals. Many degenerative diseases have been linked to a breakdown in the process. Buck faculty member Gordon Lithgow, PhD, who led the research, said this study points to the use of compounds to support protein homeostasis, something that ThT, did as the worms aged.

ThT works as a marker of neurodegenerative diseases because it binds amyloid plaques – the toxic aggregated protein fragments associated with Alzheimer’s. In the nematodes ThT’s ability to not only bind, but also slow the clumping of toxic protein fragments, may be key to the compound’s ability to extend lifespan, according to Lithgow. “We have been looking for compounds that slow aging for more than ten years and ThT is the best we have seen so far,” said Lithgow. “But more exciting is the discovery that ThT so dramatically improves nematode models of disease-related pathology as well,” said Lithgow, who said the discovery brings together three crucial concepts in the search for compounds that could extend healthspan, the healthy years of life. “ThT allows us to manipulate the aging process, it has the potential to be active in multiple disease states and it enhances the animal’s innate ability to deal with changes in its proteins.”

The research was the brainchild of Silvestre Alavez, PhD, a staff scientist in the Lithgow lab. Alavez was trained in neuroscience and knew about the use of these compounds to detect disease-related proteins. With the idea that small molecules could impact protein aggregation, he looked at 10 compounds and found five that were effective in increasing lifespan in the worms. Alavez said curcumin, the active ingredient in the popular Indian spice turmeric, also had a significant positive impact on both healthy worms and those bred to express a gene associated with Alzheimer’s. “People have been making claims about the health benefits of curcumin for many years. Maybe slowing aging is part of its mechanism of action,” said Alavez. Curcumin is currently being tested in several human clinical trials for conditions ranging from colon cancer to rheumatoid arthritis to depression. Alavez says the study supports the concept that protein homeostasis should be the focus of future research. “We now have an exciting new avenue in the search for compounds that both extend lifespan and slow disease processes,” said Alavez. “Any small molecule that maintains protein homeostasis during aging could be active against multiple disease states.” Follow up research on ThT is now underway in mice bred to have Alzheimer’s.

Contributors to the work:
Other Buck Institute researchers involved in the study include Maithili C. Vantipalli; Ida M. Klang, a graduate student from the Karolinksa Institute in Stockholm, Sweden; and David Zucker, a student from Dominican University, CA. The work was supported by grants from the Larry L. Hillblom Foundation; the National Institutes of Health supporting the Buck Institute’s Interdisciplinary Research Consortium on Geroscience; the National Institute on Aging (through the American Recovery and Reinvestment Act of 2009); and the Longevity Consortium.
About the Buck Institute for Research on Aging:
The Buck Institute is the first freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual’s life. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer’s and Parkinson’s disease, cancer, cardiovascular disease and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology. For more information: www.buckinstitute.org.

Kris Rebillot | Newswise Science News
Further information:
http://www.buckinstitute.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>