Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common cold virus efficiently delivers corrected gene to cystic fibrosis cells

22.07.2009
Scientists have worked for 20 years to perfect gene therapy for the treatment of cystic fibrosis, which causes the body to produce dehydrated, thicker-than-normal mucus that clogs the lungs and leads to life threatening infections.

Now University of North Carolina at Chapel Hill School of Medicine scientists have found what may be the most efficient way to deliver a corrected gene to lung cells collected from cystic fibrosis patients. They also showed that it may take this high level of efficiency for cystic fibrosis (CF) patients to see any benefit from gene therapy.

Using parainfluenza virus, one of the viruses that causes common colds, the UNC scientists found that delivery of a corrected version of the CFTR gene to 25 percent of cells grown in a tissue culture model that resembles the lining of the human airways was sufficient to restore normal function back to the tissue.

"This is the first demonstration in which we've been able to execute delivery in an efficient manner," said Ray Pickles, Ph.D., associate professor of microbiology and immunology at the UNC Cystic Fibrosis Research and Treatment Center. "When you consider that in past gene therapy studies, the targeting efficiency has been somewhere around 0.1 percent of cells, you can see this is a giant leap forward."

"We discovered that if you take a virus that has evolved to infect the human airways, and you engineer a normal CFTR gene into it, you can use this virus to correct all of the hallmark CF features in the model system that we used," Pickles said. For instance, the experiment improved the cells' ability to hydrate and transport mucus secretions.

The resulting paper is published in the July 21 issue of the journal PLoS Biology.

Now the researchers must work to ensure the safety of the delivery system. In a pleasant surprise, simply adding the CFTR gene to the virus significantly attenuated it, potentially reducing its ability to cause inflammation. But the scientists may need to alter the virus further.

"We haven't generated a vector that we can go out and give to patients now," Pickles said, "but these studies continue to convince us that a gene replacement therapy for CF patients will some day be available in the future."

In addition to Pickles, UNC co-authors are Liqun Zhang Ph.D, research associate, CF Center; Brian Button Ph.D., assistant professor, CF Center; Sherif E. Gabriel Ph.D., associate professor, pediatrics); Susan Burkett, research analyst, CF Center; Yu Yan, research specialist, CF Center; Yan Li Dang, research specialist, CF Center; Tristan McKay Ph.D., postdoctoral fellow, CF Center; and Richard C. Boucher M.D., Kenan Professor of Medicine, director, CF Center.

Other co-authors are April Mengos of the Mayo Clinic College of Medicine, as well as Mario H. Skiadopoulos, Ph.D., Leatrice N. Vogel and Peter L. Collins Ph.D., all of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

The research was funded by the National Institutes of Health and the Cystic Fibrosis Foundation.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>