Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common cold virus efficiently delivers corrected gene to cystic fibrosis cells

22.07.2009
Scientists have worked for 20 years to perfect gene therapy for the treatment of cystic fibrosis, which causes the body to produce dehydrated, thicker-than-normal mucus that clogs the lungs and leads to life threatening infections.

Now University of North Carolina at Chapel Hill School of Medicine scientists have found what may be the most efficient way to deliver a corrected gene to lung cells collected from cystic fibrosis patients. They also showed that it may take this high level of efficiency for cystic fibrosis (CF) patients to see any benefit from gene therapy.

Using parainfluenza virus, one of the viruses that causes common colds, the UNC scientists found that delivery of a corrected version of the CFTR gene to 25 percent of cells grown in a tissue culture model that resembles the lining of the human airways was sufficient to restore normal function back to the tissue.

"This is the first demonstration in which we've been able to execute delivery in an efficient manner," said Ray Pickles, Ph.D., associate professor of microbiology and immunology at the UNC Cystic Fibrosis Research and Treatment Center. "When you consider that in past gene therapy studies, the targeting efficiency has been somewhere around 0.1 percent of cells, you can see this is a giant leap forward."

"We discovered that if you take a virus that has evolved to infect the human airways, and you engineer a normal CFTR gene into it, you can use this virus to correct all of the hallmark CF features in the model system that we used," Pickles said. For instance, the experiment improved the cells' ability to hydrate and transport mucus secretions.

The resulting paper is published in the July 21 issue of the journal PLoS Biology.

Now the researchers must work to ensure the safety of the delivery system. In a pleasant surprise, simply adding the CFTR gene to the virus significantly attenuated it, potentially reducing its ability to cause inflammation. But the scientists may need to alter the virus further.

"We haven't generated a vector that we can go out and give to patients now," Pickles said, "but these studies continue to convince us that a gene replacement therapy for CF patients will some day be available in the future."

In addition to Pickles, UNC co-authors are Liqun Zhang Ph.D, research associate, CF Center; Brian Button Ph.D., assistant professor, CF Center; Sherif E. Gabriel Ph.D., associate professor, pediatrics); Susan Burkett, research analyst, CF Center; Yu Yan, research specialist, CF Center; Yan Li Dang, research specialist, CF Center; Tristan McKay Ph.D., postdoctoral fellow, CF Center; and Richard C. Boucher M.D., Kenan Professor of Medicine, director, CF Center.

Other co-authors are April Mengos of the Mayo Clinic College of Medicine, as well as Mario H. Skiadopoulos, Ph.D., Leatrice N. Vogel and Peter L. Collins Ph.D., all of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

The research was funded by the National Institutes of Health and the Cystic Fibrosis Foundation.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>