Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common cold virus efficiently delivers corrected gene to cystic fibrosis cells

22.07.2009
Scientists have worked for 20 years to perfect gene therapy for the treatment of cystic fibrosis, which causes the body to produce dehydrated, thicker-than-normal mucus that clogs the lungs and leads to life threatening infections.

Now University of North Carolina at Chapel Hill School of Medicine scientists have found what may be the most efficient way to deliver a corrected gene to lung cells collected from cystic fibrosis patients. They also showed that it may take this high level of efficiency for cystic fibrosis (CF) patients to see any benefit from gene therapy.

Using parainfluenza virus, one of the viruses that causes common colds, the UNC scientists found that delivery of a corrected version of the CFTR gene to 25 percent of cells grown in a tissue culture model that resembles the lining of the human airways was sufficient to restore normal function back to the tissue.

"This is the first demonstration in which we've been able to execute delivery in an efficient manner," said Ray Pickles, Ph.D., associate professor of microbiology and immunology at the UNC Cystic Fibrosis Research and Treatment Center. "When you consider that in past gene therapy studies, the targeting efficiency has been somewhere around 0.1 percent of cells, you can see this is a giant leap forward."

"We discovered that if you take a virus that has evolved to infect the human airways, and you engineer a normal CFTR gene into it, you can use this virus to correct all of the hallmark CF features in the model system that we used," Pickles said. For instance, the experiment improved the cells' ability to hydrate and transport mucus secretions.

The resulting paper is published in the July 21 issue of the journal PLoS Biology.

Now the researchers must work to ensure the safety of the delivery system. In a pleasant surprise, simply adding the CFTR gene to the virus significantly attenuated it, potentially reducing its ability to cause inflammation. But the scientists may need to alter the virus further.

"We haven't generated a vector that we can go out and give to patients now," Pickles said, "but these studies continue to convince us that a gene replacement therapy for CF patients will some day be available in the future."

In addition to Pickles, UNC co-authors are Liqun Zhang Ph.D, research associate, CF Center; Brian Button Ph.D., assistant professor, CF Center; Sherif E. Gabriel Ph.D., associate professor, pediatrics); Susan Burkett, research analyst, CF Center; Yu Yan, research specialist, CF Center; Yan Li Dang, research specialist, CF Center; Tristan McKay Ph.D., postdoctoral fellow, CF Center; and Richard C. Boucher M.D., Kenan Professor of Medicine, director, CF Center.

Other co-authors are April Mengos of the Mayo Clinic College of Medicine, as well as Mario H. Skiadopoulos, Ph.D., Leatrice N. Vogel and Peter L. Collins Ph.D., all of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

The research was funded by the National Institutes of Health and the Cystic Fibrosis Foundation.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>