Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Bacterium Stops Mosquitoes from Transmitting Dengue Virus

25.08.2011
Strains of a bacterium commonly found in fruit flies can prevent the Aedes aegypti mosquito from transmitting the virus that causes dengue fever, researchers have found. Their discovery could lead to a more effective way to control dengue worldwide.

North Carolina State University mathematical biologist Dr. Alun Lloyd is part of the Eliminate Dengue program, a research consortium that includes scientists from Australia and the United States. The program aims to stop the Aedes aegypti mosquito from transmitting dengue virus between humans by introducing a naturally occurring bacterium called Wolbachia – which is not harmful to humans – into the existing wild mosquito population.

“When mosquitoes carrying Wolbachia are introduced into the environment, they mate with wild mosquitoes, and pass Wolbachia to their offspring until all Aedes aegypti mosquitoes have Wolbachia. If mosquitoes don’t become infected with dengue, they cannot transmit the virus to people,” Lloyd explains.

The researchers infected female mosquitos with two different strains of Wolbachia bacteria – known as wMel and wMelPop-CLA – and did experiments to test the ability of the strains to spread throughout mosquito populations in controlled conditions. They found that both strains seemed to block the transmission of dengue virus, and that the wMel strain was able to infect almost the entire test population in just a few generations.

Lloyd contributed mathematical models that helped the researchers interpret the results of their experiments, which pointed to the wMel strain as the bacterium with the greater potential for suppressing the spread of dengue virus.

“This is a simple, non-chemical, non-harmful way to reduce the threat of dengue to humans,” Lloyd says. “It could have a transformative effect on the health of literally millions of people worldwide.”

The research is published in the Aug. 25 edition of Nature. Dr. Scott O’Neill from Monash University, Melbourne, Australia leads the program. Primary investigators in Australia and co-authors on the papers include Dr. Ary Hoffmann from the University of Melbourne, Dr. Scott Ritchie and Dr. Petrina Johnson from James Cook University and Dr. Thomas Walker from the University of Queensland. The Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative of the Bill and Melinda Gates Foundation provided funding.

The Department of Mathematics is part of NC State’s College of Physical and Mathematical Sciences.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>