Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commands from the matrix: cellular environment controls neuronal connections

06.05.2013
Journal of Neuroscience: RUB researchers report on the role of the extracellular matrix

Environment moulds behaviour - and not just that of people in society, but also at the microscopic level. This is because, for their function, neurons are dependent on the cell environment, the so-termed extracellular matrix. Researchers at the Ruhr-Universität have found evidence that this complex network of molecules controls the formation and activity of the neuronal connections.


Neuron in the net: The illustration shows a neuron from the hippocampus of a mouse in cell culture, which is surrounded by a special structure of the extracellular matrix - a perineuronal net (blue). Various structures of the synapse are coloured red, green and yellow.
Image: RUB, Department of Cell Morphology and Molecular Neurobiology

The team led by Dr. Maren Geißler und Prof. Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology reports in the “Journal of Neuroscience” in collaboration with the team of Dr. Ainhara Aguado, Prof. Christian Wetzel and Prof. Hanns Hatt from the Department of Cell Physiology.

Neurons and astrocytes in culture

In cooperation with Prof. Uwe Rauch from Lund University in Sweden, Bochum’s biologists examined cells from the brains of two mouse species: a species with a normal extracellular matrix and a species which lacked four components of the extracellular matrix due to genetic manipulation, namely the molecules tenascin-C, tenascin-R, neurocan and brevican. They took the cells from the hippocampus, a brain structure that is crucial for the long-term memory. The team not only examined neurons but also astrocytes, which are in close contact with the neurons, support their function and secrete molecules for the extracellular matrix.

Formation, stability and activity of the neuronal connections depend on the matrix

The researchers cultivated the neurons and astrocytes together for four weeks with a specially developed culture strategy. Among other things, they observed how many connections, known as synapses, the neurons formed with each other and how stable these were over time. If either the astrocytes or the neurons in the culture dish derived from animals with a reduced extracellular matrix, these synapses proved to be less stable in the medium term, and their number was significantly reduced.
Together with the Department of Cell Physiology at the RUB and the University of Regensburg, the team also showed that the neurons with a mutated matrix showed lower spontaneous activity than normal cells. The extracellular matrix thus regulates the formation, stability and activity of the neuronal connections. The researchers also examined a special structure of the extracellular matrix, the so-called perineuronal nets, which the Nobel laureate Camillo Golgi first described more than a century ago. They were significantly reduced in the environment of genetically modified cells.

Bibliographic record

M. Geissler, C. Gottschling, A. Aguado, U. Rauch, C.H. Wetzel, H. Hatt, A. Faissner (2013): Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation, Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.3275-12.2013

Further information

Prof. Dr. Andreas Faissner, Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28851, E-mail: Andreas.Faissner@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>