Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commands from the matrix: cellular environment controls neuronal connections

06.05.2013
Journal of Neuroscience: RUB researchers report on the role of the extracellular matrix

Environment moulds behaviour - and not just that of people in society, but also at the microscopic level. This is because, for their function, neurons are dependent on the cell environment, the so-termed extracellular matrix. Researchers at the Ruhr-Universität have found evidence that this complex network of molecules controls the formation and activity of the neuronal connections.


Neuron in the net: The illustration shows a neuron from the hippocampus of a mouse in cell culture, which is surrounded by a special structure of the extracellular matrix - a perineuronal net (blue). Various structures of the synapse are coloured red, green and yellow.
Image: RUB, Department of Cell Morphology and Molecular Neurobiology

The team led by Dr. Maren Geißler und Prof. Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology reports in the “Journal of Neuroscience” in collaboration with the team of Dr. Ainhara Aguado, Prof. Christian Wetzel and Prof. Hanns Hatt from the Department of Cell Physiology.

Neurons and astrocytes in culture

In cooperation with Prof. Uwe Rauch from Lund University in Sweden, Bochum’s biologists examined cells from the brains of two mouse species: a species with a normal extracellular matrix and a species which lacked four components of the extracellular matrix due to genetic manipulation, namely the molecules tenascin-C, tenascin-R, neurocan and brevican. They took the cells from the hippocampus, a brain structure that is crucial for the long-term memory. The team not only examined neurons but also astrocytes, which are in close contact with the neurons, support their function and secrete molecules for the extracellular matrix.

Formation, stability and activity of the neuronal connections depend on the matrix

The researchers cultivated the neurons and astrocytes together for four weeks with a specially developed culture strategy. Among other things, they observed how many connections, known as synapses, the neurons formed with each other and how stable these were over time. If either the astrocytes or the neurons in the culture dish derived from animals with a reduced extracellular matrix, these synapses proved to be less stable in the medium term, and their number was significantly reduced.
Together with the Department of Cell Physiology at the RUB and the University of Regensburg, the team also showed that the neurons with a mutated matrix showed lower spontaneous activity than normal cells. The extracellular matrix thus regulates the formation, stability and activity of the neuronal connections. The researchers also examined a special structure of the extracellular matrix, the so-called perineuronal nets, which the Nobel laureate Camillo Golgi first described more than a century ago. They were significantly reduced in the environment of genetically modified cells.

Bibliographic record

M. Geissler, C. Gottschling, A. Aguado, U. Rauch, C.H. Wetzel, H. Hatt, A. Faissner (2013): Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation, Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.3275-12.2013

Further information

Prof. Dr. Andreas Faissner, Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28851, E-mail: Andreas.Faissner@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>