Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comeback of an abandoned antibiotic: Trimethoprim is more effective than expected

19.03.2014

Scarlet fever and infections of the skin and throat are often caused by a bacterium called Streptococcus pyogenes.

In less-developed countries, inexpensive and well-tolerated antibiotics for therapy are often not available. Scientists of the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, have discovered that trimethoprim may provide an option.


Scientists use the zone of inhibition test to study antibiotic resistance of bacteria. The wafers contain an antibiotic that inhibits growth of sensitive bacteria in their vicinity. HZI/Bergmann und Nitsche-Schmitz

Contrary to a long-held belief, the bacteria are not generally resistant to this agent. In their recent publication, the scientists demonstrated that there are three potential pathways for the development of resistance - meaning that streptococci can easily become resistant to the antibiotic and pass on this trait quickly.

The common bacterium Streptococcus pyogenes is responsible not only for scarlet fever, a childhood disease presenting with characteristic skin rash, but also for many suppurative infections of the skin. The infection can be associated with serious consequences such as acute rheumatic fever and inflammation of the kidneys.

In Germany, physicians usually prescribe penicillin, an antibiotic. In less-developed countries, penicillin is not always an option though. Firstly, penicillin is often not available and secondly, co-infections, i.e. concurrent infections, by another bacterium called Staphylococcus aureus occur and this microorganism is often no longer susceptible to the action of penicillin.

A group of scientists directed by Dr Patric Nitsche-Schmitz of the HZI entered into cooperation with the German National Reference Center for Streptococci in Aachen, Germany, to investigate if the antibiotic trimethoprim can be helpful in these scenarios.

Trimethoprim inhibits an enzyme of folic acid metabolism called dihydrofolate reductase, which plays an important role in bacterial growth. Trimethoprim thus prevents bacteria from proliferating in the body. In the past, doctors advised against the use of this medication for treatment of streptococcal infections.

The underlying reasoning was the wide-spread belief that the bacteria are already resistant to this agent, a misconception, as is becoming increasingly more evident. The reason for this mistake is that early studies used a culture medium that reduces the anti-microbial effect of trimethoprim. 

The scientists from Braunschweig investigated samples from infected patients from Germany and India for resistance to trimethoprim. The majority of the samples were sensitive to the agent. "This shows that trimethoprim is indeed effective in many cases of Streptococcus pyogenes infection," Nitsche-Schmitz said. 

The focus of his team was also on samples, in which the bacteria failed to respond to the agent. They discovered two types of resistance. "Spontaneous mutations can occur in the gene for dihydrofolate reductase rendering trimethoprim no longer able to attack the changed enzyme, which means it becomes ineffective," Nitsche-Schmitz explained.

The team from Braunschweig detected a specific mutation in this gene in many samples, which renders streptococci resistant. In addition, bacteria can transfer copies of changed variants of the dihydrofolate reductase gene to other bacteria. This process called horizontal gene transfer allows resistance to spread very rapidly. The scientists found two genes of this type to be further causes of insensitivity.

The study shows that the antibiotic trimethoprim is a therapeutic option for Streptococcus pyogenes infections in some geographical regions of the world. The frequency of resistance is much lower than previously believed and the medication is inexpensive, stable and effective in Staphylococcus aureus co-infections.

"However, it is like a sword that can loose its sharpness quickly," Nitsche-Schmitz said. "We found three causes for the rapid spread of resistance. It is important that trimethoprim, like all antibiotics, is not prescribed without need and that patients take the agent in accordance with the instructions given."

Original publication:
René Bergmann, Mark van der Linden, Gursharan S. Chhatwal and D. Patric Nitsche-Schmitz
Factors that cause trimethoprim resistance in Streptococcus pyogenes
Antimicrobial Agent and Chemotherapy, 2014, doi: 10.1128/AAC.02282-13

The research group "Microbial interactions and processes" investigates the interplay of micro-organisms in complex communities made up of millions of cells and hundreds or even thousands of species. The group employs new methods for the identification of bacteria and the characterisation of bacterial activities in its work.

The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.
http://www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/comeback_e... - This press release on www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>