Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using combinatorial libraries to engineer genetic circuits advances synthetic biology

24.04.2009
Streamlining the construction of synthetic gene networks has led a team of Boston University researchers to develop a technique that couples libraries of diversified components with computer modeling to guide predictable gene network construction without the back and forth tweaking.

By applying engineering principles to biological systems where a set of components can evolve into networks that display desired behaviors – known as synthetic biology -- , has led to new opportunities for biofabrication, drug manufacturing -- even potential biofuels.

And while there have been notable successes, the basic process of building and assembling a predictable gene network from bio-molecular parts remains a major challenge that is often frustrating. The time-consuming tweaking phase often requires many months of swapping out different chemical inputs, RNA regulators and promotors before the sought -after network is realized.

In a paper published online this week in Nature Biotechnology, the research team, led by James J. Collins, BU professor of biomedical engineering, focused on ways to speed up the construction process by assembling a library of 20 versions of two gene promotors and a simple synthesis technique to create component libraries for synthetic biology. Each version covered a wide range gene expression. With the activity levels calculated from the component libraries, the scientists turned to a computer model and designed and built a basic gene circuit to predict how fluorescent protein expression varied with levels of promoter-inhibiting chemicals.

Using the same simulation, for the simple gene circuit the researchers went the next step with a genetic timer, a more complicated circuit. However, computer simulation, on its own, was unable to predict the behavior of this timing circuit. They then built a representative genetic timer using a promoter from each of their libraries and, over time, tracked its behavior. Based on information from one network, the research team was able to calibrate their model and achieve accurate predictions from all the other possible network combinations. These timers, the study notes, are effectively genetic toggle switches.

One last test of these genetic timers was to assemble and test one in yeast, which could accurately time yeast sedimentation -- a process that can be applied to biotechnology and some popular brewed beverages.

"The phenotype is crucial in industrial beer, wine and bioethanol fermentation, as it allows for easy removal of yeast sediments after all the sugars have been converted to ethanol," the paper noted.

The researchers concluded that their method using combinatorial libraries to engineer genetic circuits moves the "tweaking" from the back-end of gene network engineering to the front-end.

"Projects undertaken with this approach will help accelerate synthetic biology by yielding many more components for the community," the paper concludes, noting the need for extensive characterization of each component is eliminated or substantially reduced.

"Our work also provides an accessible method for introducing predictable, controlled variability to networks, a feature that is increasingly becoming desirable as synthetic biology enters its second decade."

The research paper, "Diversity-based, Model-Guided Construction of Synthetic Gene Networks with Predicted Functions, "was authored by Tom Ellis and Xiao Wang, both post doctoral students at Boston University's Center for BioDynamics and Center for Advanced Biotechnology and Collins.

Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU consists of 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

Ronald Rosenberg | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>