Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating infection of crops by nematodes is soon to improve

16.01.2009
Nematodes

Nematodes are small worms. Some species are plant-parasitic and infect plants including important agricultural crops.

The typical symptoms of a nematode-infection are withering, seriously retarded growth, and impaired development of flower and fruit. Severely infected plants often do not survive the damage that the worms inflict. Each year, plant-parasitic nematodes cause more than 80 billion euro in agricultural losses worldwide.

Plant roots as food factories

Some of these nematodes have developed an ingenious way of making a plant feed them. They penetrate the plant’s roots and make their way to their host’s vascular bundles, which are part of the plant’s transport system for water, minerals, sugars, and other nutrients. The nematodes select a single plant cell in the vascular bundle system and then inject this cell with a cocktail of proteins. The activating influence of these proteins causes the plant cell to merge with neighboring cells and to start producing food for the nematode. This plant cell - which can become as large as 200 normal plant cells - is called the nematode feeding site.

Nematodes trick the plant

Research has revealed that nematodes mislead the plant by disrupting its hormonal regulation. The plant hormone auxin, which is important for nearly every one of the plant’s developmental processes, accumulates at the site of infection. Later, when the feeding site needs to grow, auxin accumulates in the neighboring plant cells. Until now, scientists have not known how nematodes manipulate the transport of auxin.

PIN proteins

Wim Grunewald and his colleagues from VIB and Ghent University have been studying the role of PIN proteins in a popular model plant: the mouse ear cress (Arabidopsis thaliana). These plant proteins enable the transport of auxin from one cell to another. To discover the specific function of the various PIN proteins, the researchers have used plants that, through manipulation, are not able to produce PIN1, PIN2, PIN3, PIN4 or PIN7. In this way, the researchers have been able to show that nematodes knock out certain of the plant’s PIN proteins, while other PIN proteins are activated just to transport auxin to the neighboring cells.

With this discovery, the scientists are taking us a step closer towards fully understanding the way in which nematodes feed themselves through plants. Ways to thwart the nematodes can then be invented - for example, by locally counteracting the nematodes’ manipulation of auxin transport. Because current methods for protecting agricultural and other crops against nematodes require substances that are very environmentally unfriendly, this finding can lead to important improvements in combating this costly problem.

Evy Vierstraete | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>