Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating infection of crops by nematodes is soon to improve

16.01.2009
Nematodes

Nematodes are small worms. Some species are plant-parasitic and infect plants including important agricultural crops.

The typical symptoms of a nematode-infection are withering, seriously retarded growth, and impaired development of flower and fruit. Severely infected plants often do not survive the damage that the worms inflict. Each year, plant-parasitic nematodes cause more than 80 billion euro in agricultural losses worldwide.

Plant roots as food factories

Some of these nematodes have developed an ingenious way of making a plant feed them. They penetrate the plant’s roots and make their way to their host’s vascular bundles, which are part of the plant’s transport system for water, minerals, sugars, and other nutrients. The nematodes select a single plant cell in the vascular bundle system and then inject this cell with a cocktail of proteins. The activating influence of these proteins causes the plant cell to merge with neighboring cells and to start producing food for the nematode. This plant cell - which can become as large as 200 normal plant cells - is called the nematode feeding site.

Nematodes trick the plant

Research has revealed that nematodes mislead the plant by disrupting its hormonal regulation. The plant hormone auxin, which is important for nearly every one of the plant’s developmental processes, accumulates at the site of infection. Later, when the feeding site needs to grow, auxin accumulates in the neighboring plant cells. Until now, scientists have not known how nematodes manipulate the transport of auxin.

PIN proteins

Wim Grunewald and his colleagues from VIB and Ghent University have been studying the role of PIN proteins in a popular model plant: the mouse ear cress (Arabidopsis thaliana). These plant proteins enable the transport of auxin from one cell to another. To discover the specific function of the various PIN proteins, the researchers have used plants that, through manipulation, are not able to produce PIN1, PIN2, PIN3, PIN4 or PIN7. In this way, the researchers have been able to show that nematodes knock out certain of the plant’s PIN proteins, while other PIN proteins are activated just to transport auxin to the neighboring cells.

With this discovery, the scientists are taking us a step closer towards fully understanding the way in which nematodes feed themselves through plants. Ways to thwart the nematodes can then be invented - for example, by locally counteracting the nematodes’ manipulation of auxin transport. Because current methods for protecting agricultural and other crops against nematodes require substances that are very environmentally unfriendly, this finding can lead to important improvements in combating this costly problem.

Evy Vierstraete | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>