Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating infection of crops by nematodes is soon to improve

16.01.2009
Nematodes

Nematodes are small worms. Some species are plant-parasitic and infect plants including important agricultural crops.

The typical symptoms of a nematode-infection are withering, seriously retarded growth, and impaired development of flower and fruit. Severely infected plants often do not survive the damage that the worms inflict. Each year, plant-parasitic nematodes cause more than 80 billion euro in agricultural losses worldwide.

Plant roots as food factories

Some of these nematodes have developed an ingenious way of making a plant feed them. They penetrate the plant’s roots and make their way to their host’s vascular bundles, which are part of the plant’s transport system for water, minerals, sugars, and other nutrients. The nematodes select a single plant cell in the vascular bundle system and then inject this cell with a cocktail of proteins. The activating influence of these proteins causes the plant cell to merge with neighboring cells and to start producing food for the nematode. This plant cell - which can become as large as 200 normal plant cells - is called the nematode feeding site.

Nematodes trick the plant

Research has revealed that nematodes mislead the plant by disrupting its hormonal regulation. The plant hormone auxin, which is important for nearly every one of the plant’s developmental processes, accumulates at the site of infection. Later, when the feeding site needs to grow, auxin accumulates in the neighboring plant cells. Until now, scientists have not known how nematodes manipulate the transport of auxin.

PIN proteins

Wim Grunewald and his colleagues from VIB and Ghent University have been studying the role of PIN proteins in a popular model plant: the mouse ear cress (Arabidopsis thaliana). These plant proteins enable the transport of auxin from one cell to another. To discover the specific function of the various PIN proteins, the researchers have used plants that, through manipulation, are not able to produce PIN1, PIN2, PIN3, PIN4 or PIN7. In this way, the researchers have been able to show that nematodes knock out certain of the plant’s PIN proteins, while other PIN proteins are activated just to transport auxin to the neighboring cells.

With this discovery, the scientists are taking us a step closer towards fully understanding the way in which nematodes feed themselves through plants. Ways to thwart the nematodes can then be invented - for example, by locally counteracting the nematodes’ manipulation of auxin transport. Because current methods for protecting agricultural and other crops against nematodes require substances that are very environmentally unfriendly, this finding can lead to important improvements in combating this costly problem.

Evy Vierstraete | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>