Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Combating the deathly Coronavirus

Infection Biologists of the German Primate Center have identified host cell factors that activate the dangerous human coronavirus EMC and might be potential targets for therapeutic intervention

Scientists all over the world are on a quest for an antidote since the first patient died from the new coronavirus in summer 2012. Infection Researchers from the German Primate Center have now identified enzymes that activate the virus for infection. The scientists hope that their discovery will contribute to the development of treatment for the life-threatening disease.

The coronavirus 2c EMC/2012 causes severe respiratory disease and renal failure. So far more than half of all patients with laboratory confirmed infection died from the disease. The virus presumably originated in the Arabian Peninsula. Genetic analyses have revealed a close relationship to viruses in bats. However, it is at present unclear if the new coronavirus was transmitted from bats to humans.

Researchers at the DPZ have investigated the host cell entry of the new coronavirus jointly with colleagues from Hannover, Essen, Bonn and San Francisco. The paper by the first authors Stefanie Gierer and Stephanie Bertram was published online ahead of print by the renowned Journal of Virology.

The surface protein („spike“) of the virus attaches to host cells via the newly discovered receptor DPP4 (Raj et al. 2013, Nature) and subsequently the virus enters the cells. The activation of the spike-protein by host cell enzymes, proteases, is a prerequisite to infectious viral entry. The researchers at DPZ have now identified two of these activating proteases, both of which constitute potential targets for intervention. Also, the group demonstrated that a serum derived from an EMC patient can block the spike-mediated entry.

This proves that humans are able to generate blocking (so called “neutralizing”) antibodies against the virus. For their research the team worked with harmless, artificial virus-like particles (“pseudotypes”), which may now be used as a diagnostic tool for identifying such neutralizing antibodies.

“The human coronavirus EMC is a potential threat to public health,” says Stefan Pöhlmann, senior author of the study. “But our research and the research of other groups identified potential targets for intervention and might help to improve our diagnostic tools.“

Original publication:
Stefanie Gierer, Stephanie Bertram, Franziska Kaup, Florian Wrensch, Adeline Heurich, Annika Krämer-Kühl, Kathrin Welsch, Michael Winkler, Benjamin Meyer, Christian Drosten, Ulf Dittmer, Thomas von Hahn, Graham Simmons, Heike Hofmann & Stefan Pöhlmann (2013): The spike-protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2 and is targeted by neutralizing antibodies. Journal of Virology. Epub ahead of print 6 March 2013. doi:10.1128/JVI.00128-13


Prof. Dr. Stefan Pöhlmann
Tel: +49 551 3851-150
Astrid Slizewski (Stabsstelle Kommunikation)
Tel: +49 551 3851-359

Printable images are provided by the DPZ’s public relations department or may be downloaded from the photodatabase of our website. In case of publication, please send a copy or a link as reference.

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 86 research and infrastructure institutions of the Leibnitz Association in Germany.

Astrid Slizewski | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>