Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia researchers identify early brain marker for familial form of depression

25.03.2009
Largest-ever imaging study of depression implicates structural changes in brain's cortex

Findings from one of the largest-ever imaging studies of depression indicate that a structural difference in the brain – a thinning of the right hemisphere – appears to be linked to a higher risk for depression, according to new research at Columbia University Medical Center and the New York State Psychiatric Institute.

The research was led by Myrna Weissman, Ph.D., professor of epidemiology in psychiatry, Columbia University College of Physicians and Surgeons, and director of the Division of Epidemiology at the New York State Psychiatric Institute, and co-senior author of the study, and Bradley Peterson, M.D., director of Child & Adolescent Psychiatry and director of MRI Research in the Department of Psychiatry at Columbia University Medical Center and the New York State Psychiatric Institute, and first author of the study.

Published in the upcoming early online edition of the Proceedings of the National Academy of Sciences (PNAS), the researchers found that people at high risk of developing depression had a 28 percent thinning of the right cortex, the brain's outermost surface, compared to people with no known risk.

The drastic reduction surprised researchers, which they say is on par with the loss of brain matter typically observed in persons with Alzheimer's disease and schizophrenia. "The difference was so great that at first we almost didn't believe it. But we checked and re-checked all of our data, and we looked for all possible alternative explanations, and still the difference was there," said Dr. Peterson.

Dr. Peterson says the thinner cortex may increase the risk of developing depression by disrupting a person's ability to pay attention to, and interpret, social and emotional cues from other people. Additional tests measured each person's level of inattention to and memory for such cues. The less brain material a person had in the right cortex, the worse they performed on the attention and memory tests.

The study compared the thickness of the cortex by imaging the brains of 131 subjects, aged 6 to 54 years-old, with and without a family history of depression. Structural differences were observed in the biological offspring of depressed subjects but were not found in the biological offspring of those who were not depressed.

One of the goals of the study was to determine whether structural abnormalities in the brain predispose people to depression or are a cause of the illness. Dr. Peterson said, "Because previous biological studies only focused on a relatively small number of individuals who already suffered from depression, their findings were unable to tease out whether those differences represented the causes of depressive illness, or a consequence."

The study found that thinning on the right side of brain did not correlate with actual depression, only an increased risk for the illness. It was subjects who exhibited an additional reduction in brain matter on the left side, who went on to develop depression or anxiety.

"Our findings suggest rather strongly that if you have thinning in the right hemisphere of the brain, you may be predisposed to depression and may also have some cognitive and inattention issues. The more thinning you have, the greater the cognitive problems. If you have additional thinning in the same region of the left hemisphere, that seems to tip you over from having a vulnerability to developing symptoms of an overt illness," said Dr. Peterson.

Imaging Done on Participants of One of Longest Multi-Generational Studies of Depression

Participants were pulled from "Children at High and Low Risk of Depression," an earlier study, which was begun 27 years ago by Dr. Weissman. While at Yale, Dr. Weissman began the trial to examine the familial risk for depression. She identified people with moderate to severe depression, as well as people with no mental illness, and followed these families for more than 25 years. Dr. Weissman found that depression was transmitted across the generations in the high risk families and at the 20 year follow-up invited Dr. Peterson to collaborate on imaging the participants. The study now includes grandparents, their children and grandchildren.

Future Clinical Implications of the Findings

Commenting on the potential clinical implications of the findings, Dr. Peterson said, "If the mechanism–or pathway to illness–indeed runs from the thinning of the cortex to these cognitive problems that affect a person's attention and their ability to ­­interpret social and emotional cues – it would suggest that there may be potential treatments or novel uses of already existing treatments for intervention. For example, either behavioral therapies that aim to improve attention and memory and/or stimulant medications currently used for attention-deficit/hyperactivity disorder (ADHD), may surface as possible treatments for people who have familial depression and this pattern of cortical thinning, in a highly personalized form of medical decision-making and treatment, for it may be that treating their inattention could improve their processing of social information. This conjecture is entirely speculative at this point, but it is a logical hypothesis to test based on the findings from this study."

Next Steps

Using function magnetic resonance imaging (fMRI) with 152 subjects, aged 12 to 20, with and without a family history of depression, Dr. Peterson and Dr. Weissman plan to learn more about the pattern of thinning by observing the circuits of functional activation during attentional tasks to look at how these groups differ.

Rescanning of the subjects in the future is also expected to allow researchers to determine if the reduction in brain matter relates to neurons rather than other supporting cells in the brain, know as glia. In addition, specific behavioral and cognitive testing can help to identify more definitively the causal pathways that lead from thinning of the cortex to depression.

Drs. Peterson, Weissman, and their colleagues also plan to study the DNA of these subjects to determine if there is a particular gene that contributes to having an elevated risk for depression. The researchers can then investigate whether individuals with this depression risk gene have more thinning in the cortex.

Background

A highly familial illness, depression is a leading cause of disability worldwide for persons 15 to 44 years of age, and is associated with increased mortality resulting from cardiovascular disease, poor personal care and suicide. Early onset of depression, which occurs before young adulthood, tends to be familial and is usually characterized as being more chronic and having greater severity.

Until now, there have been no studies of brain structure in depression which have focused on cortical thickness.

This study was supported by funding from a grant from the National Institute of Mental Health of the National Institutes of Health.

Karin Eskenazi | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>