Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia Engineering and Penn researchers increase speed of single-molecule measurements

19.03.2012
New integrated circuit design could lead to cheaper, faster DNA sequencing

As nanotechnology becomes ever more ubiquitous, researchers are using it to make medical diagnostics smaller, faster, and cheaper, in order to better diagnose diseases, learn more about inherited traits, and more.

But as sensors get smaller, measuring them becomes more difficult—there is always a tradeoff between how long any measurement takes to make and how precise it is. And when a signal is very weak, the tradeoff is especially big.

A team of researchers at Columbia Engineering, led by Electrical Engineering Professor Ken Shepard, together with colleagues at the University of Pennsylvania, has figured out a way to measure nanopores—tiny holes in a thin membrane that can detect single biological molecules such as DNA and proteins—with less error than can be achieved with commercial instruments. They have miniaturized the measurement by designing a custom integrated circuit using commercial semiconductor technology, building the nanopore measurement around the new amplifier chip. Their research will be published in the Advance Online Publication on Nature Methods's website on 18 March at 1400 (2pm) US Eastern time/ 1800 London time.

Nanopores are exciting scientists because they may lead to extremely low-cost and fast DNA sequencing. But the signals from nanopores are very weak, so it is critically important to measure them as cleanly as possible.

"We put a tiny amplifier chip directly into the liquid chamber next to the nanopore, and the signals are so clean that we can see single molecules passing through the pore in only one microsecond," says Jacob Rosenstein, a Ph.D. candidate in electrical engineering at Columbia Engineering and lead author of the paper. "Previously, scientists could only see molecules that stay in the pore for more than 10 microseconds."

Many single-molecule measurements are currently made using optical techniques, which use fluorescent molecules that emit photons at a particular wavelength. But, while fluorescence is very powerful, its major limitation is that each molecule usually produces only a few thousand photons per second. "This means you can't see anything that happens faster than a few milliseconds, because any image you could take would be too dim," explains Shepard, who is Rosenstein's advisor. "On the other hand, if you can use techniques that measure electrons or ions, you can get billions of signals per second. The problem is that for electronic measurements there is no equivalent to a fluorescent wavelength filter, so even though the signal comes through, it is often buried in background noise."

Shepard's group has been interested in single-molecule measurements for several years looking at a variety of novel transduction platforms. They began working with nanopore sensors after Marija Drndic, a professor of physics at the University of Pennsylvania, gave a seminar at Columbia Engineering in 2009. "We saw that nearly everybody else measures nanopores using classical electrophysiology amplifiers, which are mostly optimized for slower measurements," notes Shepard. "So we designed our own integrated circuit instead."

Rosenstein designed the new electronics and did much of the lab work. Drndic's group at the University of Pennsylvania fabricated the nanopores that the team then measured in their new system.

"While most groups are trying to slow down DNA, our approach is to build faster electronics," says Drndic. "We combined the most sensitive electronics with the most sensitive solid-state nanopores."

"It's very exciting to be able to make purely electronic measurements of single molecules," says Rosenstein. "The setup for nanopore measurements is very simple and portable. It doesn't require a complicated microscope or high powered instruments; it just requires attention to detail. You can easily imagine nanopore technology having a major impact on DNA sequencing and other medical applications within the next few years."

Shepard's group is continuing to improve these techniques. "With a next-generation design," he says, "we may be able to get a further 10X improvement, and measure things that last only 100 nanoseconds. Our lab is also working with other electronic single-molecule techniques based on carbon nanotube transistors, which can leverage similar electronic circuits. This is an exciting time!"

This research has been funded by the National Institutes of Health, the Semiconductor Research Corporation, and the Office of Naval Research.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society's more difficult challenges. http://www.engineering.columbia.edu/

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>