Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colugos glide to save time, not energy

28.07.2011
Gripping tightly to a tree trunk, at first sight a colugo might be mistaken for a lemur.

However, when this animal leaps it launches into a graceful glide, spreading wide the enormous membrane that spans its legs and tail to cover distances of up to 150m. So, when Greg Byrnes and his colleague Andrew Spence from the University of California, Berkeley, USA, were looking around for a mammal to carry the accelerometer/radio transmitter backpacks that the duo designed to track animals in the field, the colugo was an obvious choice.

'They are a large glider and it was an opportunity to learn about an animal that we didn't know much about,' says Byrnes. Admitting that they were initially interested in the natural history of these charismatic creatures, Byrnes realised that they could use the information gathered to find out about the cost of the colugo's gliding lifestyle. Flying to Singapore, Byrnes teamed up with Norman Lim to track the gliding mammals and the team discovered that instead of saving energy, colugos glide to save time. They publish this discovery in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/16/2690.abstract

Describing how some of the nocturnal colugos roost low in the forest, Byrnes was able to capture six of the mammals and glue the accelerometer packs to their backs before allowing them to scurry back up their trees for their first glide of the night. Explaining that the data loggers were able to collect data for 3 days, Byrnes and Lim tracked the animals until the data loggers eventually fell off and they were able to retrieve them several weeks later.

Back in Berkeley, Byrnes, Spence and Thomas Libby had the unenviable task of managing the colossal amount of data collected: 'We were sampling at 100Hz for days,' explains Byrnes. According to Byrnes, there is a distinctive acceleration profile when they glide. 'What you see is the leap and the landing when there is this sweeping acceleration, so it's easy to pick out their glides,' he says. Eventually, the trio converted each animal's acceleration traces into velocities – as they scaled trees and glided – and then they calculated the distances that the animals covered.

Analysing the glide trajectories, the team realised that the colugos only climb a relatively small height to achieve their lengthy shallow glides. 'The average was 8 m for an animal that is gliding 30m,' says Byrnes. But how much energy were they using to cover that distance?

Basing their calculations on the amount of energy used by small climbing primates – close relatives of the colugo – the trio calculated the energy used by a colugo ascending a tree to initiate a glide. Then they calculated the amount of energy that the animals would use if they had clambered through the canopy to cover the glide distance and were amazed to see that instead of saving energy, the colugos were using 1.5 times more energy. 'This was a surprise, as the dogma has always been that gliding is cheaper,' says Byrnes.

However, one thing was clear: gliding was faster. 'If you watch the animals move through the trees they move pretty slowly,' says Byrnes, 'But they can go 10 times as fast and cover long distances gliding so they can spend more time foraging,' he explains. Gliding could also protect colugos from dangerous predators and reduce the risks of climbing on spindly branches, so it could be more of a long-term benefit than simply saving energy

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Byrnes, G., Libby, T., Lim, N. T.-L. and Spence, A. J. (2011). Gliding saves time but not energy in Malayan colugos. J. Exp. Biol. 214, 2690-2696.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>