Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colugos glide to save time, not energy

28.07.2011
Gripping tightly to a tree trunk, at first sight a colugo might be mistaken for a lemur.

However, when this animal leaps it launches into a graceful glide, spreading wide the enormous membrane that spans its legs and tail to cover distances of up to 150m. So, when Greg Byrnes and his colleague Andrew Spence from the University of California, Berkeley, USA, were looking around for a mammal to carry the accelerometer/radio transmitter backpacks that the duo designed to track animals in the field, the colugo was an obvious choice.

'They are a large glider and it was an opportunity to learn about an animal that we didn't know much about,' says Byrnes. Admitting that they were initially interested in the natural history of these charismatic creatures, Byrnes realised that they could use the information gathered to find out about the cost of the colugo's gliding lifestyle. Flying to Singapore, Byrnes teamed up with Norman Lim to track the gliding mammals and the team discovered that instead of saving energy, colugos glide to save time. They publish this discovery in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/16/2690.abstract

Describing how some of the nocturnal colugos roost low in the forest, Byrnes was able to capture six of the mammals and glue the accelerometer packs to their backs before allowing them to scurry back up their trees for their first glide of the night. Explaining that the data loggers were able to collect data for 3 days, Byrnes and Lim tracked the animals until the data loggers eventually fell off and they were able to retrieve them several weeks later.

Back in Berkeley, Byrnes, Spence and Thomas Libby had the unenviable task of managing the colossal amount of data collected: 'We were sampling at 100Hz for days,' explains Byrnes. According to Byrnes, there is a distinctive acceleration profile when they glide. 'What you see is the leap and the landing when there is this sweeping acceleration, so it's easy to pick out their glides,' he says. Eventually, the trio converted each animal's acceleration traces into velocities – as they scaled trees and glided – and then they calculated the distances that the animals covered.

Analysing the glide trajectories, the team realised that the colugos only climb a relatively small height to achieve their lengthy shallow glides. 'The average was 8 m for an animal that is gliding 30m,' says Byrnes. But how much energy were they using to cover that distance?

Basing their calculations on the amount of energy used by small climbing primates – close relatives of the colugo – the trio calculated the energy used by a colugo ascending a tree to initiate a glide. Then they calculated the amount of energy that the animals would use if they had clambered through the canopy to cover the glide distance and were amazed to see that instead of saving energy, the colugos were using 1.5 times more energy. 'This was a surprise, as the dogma has always been that gliding is cheaper,' says Byrnes.

However, one thing was clear: gliding was faster. 'If you watch the animals move through the trees they move pretty slowly,' says Byrnes, 'But they can go 10 times as fast and cover long distances gliding so they can spend more time foraging,' he explains. Gliding could also protect colugos from dangerous predators and reduce the risks of climbing on spindly branches, so it could be more of a long-term benefit than simply saving energy

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Byrnes, G., Libby, T., Lim, N. T.-L. and Spence, A. J. (2011). Gliding saves time but not energy in Malayan colugos. J. Exp. Biol. 214, 2690-2696.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>