Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colugos glide to save time, not energy

28.07.2011
Gripping tightly to a tree trunk, at first sight a colugo might be mistaken for a lemur.

However, when this animal leaps it launches into a graceful glide, spreading wide the enormous membrane that spans its legs and tail to cover distances of up to 150m. So, when Greg Byrnes and his colleague Andrew Spence from the University of California, Berkeley, USA, were looking around for a mammal to carry the accelerometer/radio transmitter backpacks that the duo designed to track animals in the field, the colugo was an obvious choice.

'They are a large glider and it was an opportunity to learn about an animal that we didn't know much about,' says Byrnes. Admitting that they were initially interested in the natural history of these charismatic creatures, Byrnes realised that they could use the information gathered to find out about the cost of the colugo's gliding lifestyle. Flying to Singapore, Byrnes teamed up with Norman Lim to track the gliding mammals and the team discovered that instead of saving energy, colugos glide to save time. They publish this discovery in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/16/2690.abstract

Describing how some of the nocturnal colugos roost low in the forest, Byrnes was able to capture six of the mammals and glue the accelerometer packs to their backs before allowing them to scurry back up their trees for their first glide of the night. Explaining that the data loggers were able to collect data for 3 days, Byrnes and Lim tracked the animals until the data loggers eventually fell off and they were able to retrieve them several weeks later.

Back in Berkeley, Byrnes, Spence and Thomas Libby had the unenviable task of managing the colossal amount of data collected: 'We were sampling at 100Hz for days,' explains Byrnes. According to Byrnes, there is a distinctive acceleration profile when they glide. 'What you see is the leap and the landing when there is this sweeping acceleration, so it's easy to pick out their glides,' he says. Eventually, the trio converted each animal's acceleration traces into velocities – as they scaled trees and glided – and then they calculated the distances that the animals covered.

Analysing the glide trajectories, the team realised that the colugos only climb a relatively small height to achieve their lengthy shallow glides. 'The average was 8 m for an animal that is gliding 30m,' says Byrnes. But how much energy were they using to cover that distance?

Basing their calculations on the amount of energy used by small climbing primates – close relatives of the colugo – the trio calculated the energy used by a colugo ascending a tree to initiate a glide. Then they calculated the amount of energy that the animals would use if they had clambered through the canopy to cover the glide distance and were amazed to see that instead of saving energy, the colugos were using 1.5 times more energy. 'This was a surprise, as the dogma has always been that gliding is cheaper,' says Byrnes.

However, one thing was clear: gliding was faster. 'If you watch the animals move through the trees they move pretty slowly,' says Byrnes, 'But they can go 10 times as fast and cover long distances gliding so they can spend more time foraging,' he explains. Gliding could also protect colugos from dangerous predators and reduce the risks of climbing on spindly branches, so it could be more of a long-term benefit than simply saving energy

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Byrnes, G., Libby, T., Lim, N. T.-L. and Spence, A. J. (2011). Gliding saves time but not energy in Malayan colugos. J. Exp. Biol. 214, 2690-2696.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>