Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How colors enter the world of the fly

10.12.2013
Tasty bread crumb or just a boring dust grain? Color vision facilitates the recognition of objects. Neurobiologists at the Bernstein Center Munich now discover a new pathway for color in the fly's compound eye and help to unravel color perception in insects.

To distinguish colors, the brain compares signals from sensory cells that are activated by light of different wavelengths. But how does color information reach a fly’s brain? Insects possess compound eyes, which are composed of many individual eye units, so-called ommatidia.


To detect an object on the basis of color, flies use both inner and outer receptor cells of the innumerable ommatidia in the flies' compound eyes, as Bernstein scientists have now discovered.
Pavel Masek/Bernstein Koordinationsstelle, 2013

A single ommatidium consists of eight light-sensitive photoreceptor cells. Six of them are arranged in a ring, with the two remaining cells located in its center. In flies, the six outer receptor cells respond to light over a broad range of wavelengths. Since the perception of color depends on the processing of specific wavelength regions, researchers assumed that these receptors are mainly responsible for motion perception.

In contrast, the two inner photoreceptors are sensitive to light of single narrow wavelength regions—and may therefore pass on precise information about colors. So far, they have been considered to be the exclusive source of color vision in flies.

Neuroscientists at the Bernstein Center Munich, the Max Planck Institute of Neurobiology in Martinsried, and the LMU Munich now discovered that this assumption needs to be revised. "The outer photoreceptors contribute to color discrimination of the fly as well," explains Thomas Wachtler, one of the researchers involved in the study. Using a computer model, the biologists mimicked the processing of photoreceptor signals in the fly eye—and realized that the wavelength sensitivity of the outer photoreceptors must be taken into account in order to obtain the fly's color discrimination abilities.

To support their theoretical results with experimental data, the researchers selectively controlled photoreceptor function in genetically manipulated flies. In this way, they obtained flies that possessed only one of the two color-specific inner receptor cells besides the outer receptor cells. Yet, the flies were able to distinguish two colors. "This indicates that the brain draws on information from both inner and outer photoreceptors for the color comparison," explains Christopher Schnaitmann, first author of the study. The assumption was confirmed when the scientists inhibited the activity of nerve cells that convey signals from the outer receptor cells to the brain: the flies' ability to perceive color differences was severely impaired.

The outer photoreceptors thus seem to be true multitaskers, contributing to both motion and color vision in the fly. Their dual role makes sense in small animals: it ensures that despite a limited number of neurons, flies still have complex visual skills—and may easily distinguish a bread crumb from a dust grain.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Dr. Hiromu Tanimoto
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Martinsried
Tel: +49 (0)89 8578 3492
Email: hiromut@neuro.mpg.de
PD Dr. Thomas Wachtler
Ludwig-Maximilians-Universität
Department Biology II 

Grosshadernerstr. 2 

82152 Martinsried
Tel: +49 (0)89 2180 74810 

Email: wachtler@bio.lmu.de
Original publication:
C. Schnaitmann, C. Garbers, T. Wachtler & H. Tanimoto (2013): Color discrimination with broadband photoreceptors. Current Biology, 23(23): 2375-82.

http://dx.doi.org/10.1016/j.cub.2013.10.037

Weitere Informationen:

http://www.neuro.mpg.de/tanimoto website Hiromu Tanimoto
http://neuro.bio.lmu.de/research_groups/res-wachtler_th website Thomas Wachtler
http://www.bccn-munich.de Bernstein Center Munich
http://www.uni-muenchen.de LMU Munich
http://wwww.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://wwww.nncn.de

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>