Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorful Columns

25.05.2009
Simple method for the production of microcylinders with multiple compartments

Under a microscope they look like tiny pie charts or colorful candy canes: A team led by Joerg Lahann at the University of Michigan (USA) has been able to produce micrometer-wide discs and elongated rods precisely built out of multicolored compartments.

As reported in the journal Angewandte Chemie, these scientists have developed a simple, cost-effective, reliable, and scalable method for the production of microcylinders with multiple compartments. The inner structure, aspect ratio, and surface chemistry can be tuned by means of the new production method which is based on electrodynamic co-spinning and microcutting processes.

Bicolor cylinders were made by pumping two differently colored biodegradable polymer solutions through two side-by-side jets. An electrical field stretches the exiting drops, resulting in a bicompartmental fiber that is “spun” into a bundle of parallel individual fibers. The researchers embed the 1 cm long fiber bundles in a gel, which they then freeze. Using a microtome, they slice off thin sections. Upon dissolution of the gel in water and treatment with ultrasound, the bundles can be separated into individual cylinders of uniform size. The length of the cylinders depends on the thickness of the microtome sections, which allows for the production of everything from flat discs to long rods.

If more than two jets are used, it is possible to make fibers out of three, four, or more different components. Depending on the arrangement of the jets, different patterns can be generated. For example, it is possible to fabricate cylindrical particles that look like a three-section or four-section pie chart. If the jets are positioned next to each other, the result is a striped structure. The individual segments are always identical in size and are clearly delineated.

Instead of dyeing the components, it is also possible to attach various (bio-)reagents to the segments of the cylinders if specific “anchor sites” are built into the polymer. Special shapes can also be produced when one or more segments are made of a polymer that can be selectively dissolved. For example, one fourth of a four-component cylinder can be removed to make a rod with a groove.

The new method can be used to produce particles made of precisely designed compartments with mutually independent physical and chemical properties. Possible areas of application include drug transport, tissue culture, and bundled biotests, as well as “intelligent displays” and reactive materials.

Author: Joerg Lahann, University of Michigan, Ann Arbor (USA), http://www.engin.umich.edu/dept/cheme/people/lahann.html

Title: Multicompartmental Microcylinders

Angewandte Chemie International Edition, doi: 10.1002/anie.200806241

Joerg Lahann | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.engin.umich.edu/dept/cheme/people/lahann.html

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>