Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorectal Cancer - MDC Researchers Identify Genetic Markers for Metastasis Formation

01.07.2009
Previously, only a few genes had been associated with the formation of metastases in colorectal cancer.

Now, researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Charité - University Medicine Berlin, Germany, have identified 115 genes that are disregulated both in the primary tumor and in its metastases.

In the future, their findings may help identify patients with aggressive tumors at an earlier stage (Gastroenterology 2009, doi:10.1053/j.gastro.2009.03.041).*

The National Cancer Institute estimates that, alone in the United States, 106,100 cases of colon cancer will occur and 49,920 patients will die both from colon and rectal cancer in 2009.

Beginning in glands in the bowel lining, colorectal cancer often remains undiscovered initially. "However, the main problem is not the primary tumor," explained the surgeon and clinical researcher Dr. Johannes Fritzmann, "but the dangerous metastases."

Metastases arise when single cells break off from the primary tumor and spread to other body regions via the blood vessels or the lymphatic system. In colorectal cancer, these cells usually settle in the liver, lungs, or lymph nodes. Since the affected patient seldom feels pain or shows other symptoms, the tumor is frequently not discovered until it has already formed metastases.

To investigate which genetic mutations favor the formation of metastases, the researchers analyzed 150 tissue samples of colorectal cancer patients with and without metastases. The researchers identified 115 genes that are falsely regulated in both the primary tumors and their metastases. In this way, the researchers succeeded in identifying a genetic signature which distinguishes tumors with metastatic potential from those that do not metastasize.

Of the 115 genes the researchers identified, they focused on one gene in particular: BAMBI. They discovered that this gene is more active in metastatic tumors and metastases than in non-metastatic tumors.

"Our investigations show that the particular gene BAMBI is associated with two import signaling pathways and thus promotes metastasis formation," Dr. Fritzmann said. "These signaling pathways (Wnt and TGF-beta) are, among other things, important in the developing embryo."

In the future the researchers want to investigate the role of the other 114 genes more closely, in order to better understand the individual steps of metastasis formation.

Aim - To predict at an early stage whether the tumor will spread
Dr. Fritzmann hopes the research findings will help determine early on whether a tumor has metastatic potential. The doctors could then adapt the therapy accordingly.

*A Colorectal Cancer Expression Profile that Includes Transforming Growth Factor ß Inhibitor BAMBI Predicts Metastatic Potential

Johannes Fritzmann1,2,6, Markus Morkel1,4,6, Daniel Besser1,6, Jan Budczies3, Frauke Kosel1, Felix H. Brembeck1,5, Ulrike Stein1,2, Iduna Fichtner1, Peter M. Schlag1,2 and Walter Birchmeier1

1Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
2Dept. for Surgery and Surgical Oncology, Charité - University Medical School, 13125 Berlin, Germany
3Institute for Pathology, Charité - University Medical School, 10117 Berlin, Germany
4present address: Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
5present address: Dept. of Hematology and Oncology, University Göttingen, 37075 Göttingen, Germany

6 contributed equally.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>