Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorectal Cancer - MDC Researchers Identify Genetic Markers for Metastasis Formation

01.07.2009
Previously, only a few genes had been associated with the formation of metastases in colorectal cancer.

Now, researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Charité - University Medicine Berlin, Germany, have identified 115 genes that are disregulated both in the primary tumor and in its metastases.

In the future, their findings may help identify patients with aggressive tumors at an earlier stage (Gastroenterology 2009, doi:10.1053/j.gastro.2009.03.041).*

The National Cancer Institute estimates that, alone in the United States, 106,100 cases of colon cancer will occur and 49,920 patients will die both from colon and rectal cancer in 2009.

Beginning in glands in the bowel lining, colorectal cancer often remains undiscovered initially. "However, the main problem is not the primary tumor," explained the surgeon and clinical researcher Dr. Johannes Fritzmann, "but the dangerous metastases."

Metastases arise when single cells break off from the primary tumor and spread to other body regions via the blood vessels or the lymphatic system. In colorectal cancer, these cells usually settle in the liver, lungs, or lymph nodes. Since the affected patient seldom feels pain or shows other symptoms, the tumor is frequently not discovered until it has already formed metastases.

To investigate which genetic mutations favor the formation of metastases, the researchers analyzed 150 tissue samples of colorectal cancer patients with and without metastases. The researchers identified 115 genes that are falsely regulated in both the primary tumors and their metastases. In this way, the researchers succeeded in identifying a genetic signature which distinguishes tumors with metastatic potential from those that do not metastasize.

Of the 115 genes the researchers identified, they focused on one gene in particular: BAMBI. They discovered that this gene is more active in metastatic tumors and metastases than in non-metastatic tumors.

"Our investigations show that the particular gene BAMBI is associated with two import signaling pathways and thus promotes metastasis formation," Dr. Fritzmann said. "These signaling pathways (Wnt and TGF-beta) are, among other things, important in the developing embryo."

In the future the researchers want to investigate the role of the other 114 genes more closely, in order to better understand the individual steps of metastasis formation.

Aim - To predict at an early stage whether the tumor will spread
Dr. Fritzmann hopes the research findings will help determine early on whether a tumor has metastatic potential. The doctors could then adapt the therapy accordingly.

*A Colorectal Cancer Expression Profile that Includes Transforming Growth Factor ß Inhibitor BAMBI Predicts Metastatic Potential

Johannes Fritzmann1,2,6, Markus Morkel1,4,6, Daniel Besser1,6, Jan Budczies3, Frauke Kosel1, Felix H. Brembeck1,5, Ulrike Stein1,2, Iduna Fichtner1, Peter M. Schlag1,2 and Walter Birchmeier1

1Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
2Dept. for Surgery and Surgical Oncology, Charité - University Medical School, 13125 Berlin, Germany
3Institute for Pathology, Charité - University Medical School, 10117 Berlin, Germany
4present address: Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
5present address: Dept. of Hematology and Oncology, University Göttingen, 37075 Göttingen, Germany

6 contributed equally.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>