Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color without Dyes: New non-iridescent structural colors cover the whole spectrum

20.02.2014
Free of dyes but colorful: A team of American and Korean researchers is the first to develop non-iridescent, structural, full-spectrum pigments, whose color is independent of the viewing angle, for use in reflective displays.

The researchers reveal the secret of their success in the journal Angewandte Chemie: their “photonic pigments” are microcapsules filled with densely packed core–shell colloidal particles.



Conventional coloring agents have a variety of disadvantages: organic dyes tend to fade; inorganic pigments are often based on toxic heavy metals such as chromium. The color we see results from the absorption of a portion of the visible light spectrum. The reflected portions add to the color observed.

Another way to produce color that works without absorption is widely found in nature – in butterflies, for example. Arrays of nanoscopic particles can appear to be colored as a result of wavelength-dependent optical interference, refraction, and light scattering.

The color depends on the size of the particles. However, such structural pigments iridesce, meaning that the observed color varies in accordance with the angle of illumination or the viewing angle. In displays and many other applications, this would naturally be very annoying. The high degree of order in the particles of the crystal lattice contributes to this problem.

It is thus desirable to have the particles in a noncrystalline, amorphous arrangement, which is very difficult to achieve. In addition, amorphous structural pigments have thus far had very unsatisfactory color saturation caused by so called multiple scattering. A second type of undesired scattering, so-called incoherent scattering, contributes to a blueish background color that makes it difficult to produce a full spectrum of colors, particularly red.

A team from Harvard University (USA), the Korea Advanced Institute of Science and Technology, and the Korea Electronics Technology Institute has now solved these problems. Their success is due to microcapsules packed with nanoscopic polymer spheres whose core and shell are made of two different polymers. Led by Vinothan N. Manoharan, the scientists designed the shells to have the same refractive index as the surrounding aqueous medium.

The light is thus only scattered by the cores, whose size and distance from each other determine the scattering properties. In a dense packing arrangement, the distance between cores can be determined by the thickness of the shells. If the cores are very small and the shells relatively thick, the undesired types of scattering can be minimized while the desired coherent scattering that is responsible for the structural color dominates.

By using a microfluidic technique, tiny droplets of an aqueous suspension of the core–shell particles are coated with a thin film of oil. They are then shrunken through osmosis until the particles adopt a densely packed arrangement. The soft polymer shells of the particles prevent crystallization. In the last step, the oil film is cured with UV light to make delicate, transparent, capsules.

The color of the novel structural pigments can be varied over the entire spectrum by changing the distances of the particle cores from each other by means of the thickness of the shells. The goal is to use these new nanoparticles in reflective displays.

About the Author
Vinothan N. Manoharan is the Gordon McKay Professor of Chemical Engineering and Professor of Physics at Harvard University. His research focuses on understanding the physics of self-assembly and controlling self-assembly processes to make interesting materials.
Author: Vinothan N. Manoharan, Harvard University, Cambridge (USA), http://manoharan.seas.harvard.edu/people.html
Title: Full-Spectrum Photonic Pigments with Non-iridescent Structural Colors through Colloidal Assembly

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309306

Vinothan N. Manoharan | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://manoharan.seas.harvard.edu/people.html

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>