Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color differences within and between species have common genetic origin

23.10.2009
Spend a little time people-watching at the beach and you're bound to notice differences in the amount, thickness and color of people's body hair. Then head to the zoo and compare people to chimps, our closest living relatives.

The body hair difference is even more pronounced between the two species than within our own species.

Do the same genes cause both types of variation? Biologists have puzzled over that question for some time, not just with respect to people, chimps and body hair, but for all sorts of traits that differ within and between species. Now, a study by University of Michigan researchers shows that, at least for body color in fruit flies, the two kinds of variation have a common genetic basis. The research, led by evolutionary biologist Patricia Wittkopp, appears in the Oct. 23 issue of the journal Science.

Wittkopp's group explored the genetic underpinnings of pigmentation differences within and between a pair of closely related fruit fly species: Drosophila americana, which is dark brown, and Drosophila novamexicana, which is light yellow.

"We started by asking which parts of the genome contribute to the pigmentation difference between species," said Wittkopp, an assistant professor of ecology and evolutionary biology. Genetic mapping narrowed the search to two regions that happened to contain genes already known to affect pigmentation. The researchers then focused on one particular gene, known as tan, and used fine-scale genetic mapping to determine that evolutionary changes in that specific gene, not another gene in the same region, have contributed to the pigmentation difference.

To confirm that finding, the team transferred copies of the tan gene from the yellow species into flies of a completely different species, Drosophila melanogaster, and then did the same thing with copies of the tan gene from the brown species. The only difference between the two groups of altered flies was the transferred gene, "and that difference was enough to result in pigmentation differences," Wittkopp said.

Confident that the tan gene was responsible for part of the color difference between species, Wittkopp and coworkers investigated color variation within the brown species. Some flies in that species are noticeably darker than others, and previous experiments have suggested that the basis for the difference is genetic, rather than environmental.

Again using genetic mapping, the researchers found evidence that the tan gene also contributes to color variation among individuals within the brown species. Going a step further, they showed that it is not just the same gene that contributes to color differences within and between species, but also the same genetic changes within this gene. Currently, the team is trying to pinpoint the exact genetic change (or changes) within the tan gene that is responsible for the color shift.

Although this study focused on fruit flies, the work could lead to better understanding of patterns of variation throughout nature, Wittkopp said. "We're using a model system, but when you get down to the basic mechanisms of inheritance---how information is passed from one generation to the next---the process is essentially the same in all living things. While we can't extrapolate about the specific genes involved, it is fair to say that mutations contributing to both variation within species and divergence between species may be a common source of evolutionary change."

Wittkopp's coauthors on the Science paper were undergraduate students Emma Stewart, Laura Shefner, Gabriel Smith-Winberry, Saleh Akhras and Elizabeth Thompson; graduate student Lisa Arnold; and technicians Adam Neidert and Belinda Haerum.

The researchers received funding from the National Science Foundation, the Margaret and Herman Sokol Endowment for Faculty and Graduate Student Research and the University of Michigan.

For more information:
Wittkopp: www.eeb.lsa.umich.edu/eeb/people/wittkopp/index.html
Science: -http://www.sciencemag.org/

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>