Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color-coded tracking method helps scientists analyze outcomes of newly transplanted tissue

28.05.2010
Novel imaging system paints a clear picture of T-cell actions in animal models, providing key insights into immune responses

A group of "color-coded" laboratory mice are providing researchers with a novel way of tracking T-cells, enabling them to visualize and monitor the cellular immune responses of transplanted tissue in real time. The new imaging system is described in the June issue of Nature Medicine, which appears on-line this week.

"These immune responses are a key consideration in developing strategies to improve transplant outcomes," explains co-senior author Terry Strom, MD, Co-director of the Transplant Institute at Beth Israel Deaconess Medical Center (BIDMC) and Professor of Medicine at Harvard Medical School (HMS). "The fate of a transplant following withdrawl of immunosuppressive therapy – either rejection or tolerance – is thought to be dependent upon the balance of destructive and protective T cells. With this new system, we can actually visualize this balance."

The acquisition of tolerance – a state in which transplanted tissue is not rejected by the body even in the absence of immunosuppressive therapy – is dependent upon several subsets of T cells, including protective regulatory T cells (Tregs) and destructive effector T cells (Teffs).

"The issue of whether newly transplanted tissue is attacked or protected is not a black-and-white situation," explains Strom. "Even when transplants are rejected, there will be some protective Treg cells present. And, conversely, in cases of tolerance – when the new transplant is accepted – there will still be some aggressive Teff cells at the scene of the crime." But, because it has not been possible for scientists to readily distinguish these two T cell subsets in vivo, the relative importance of these different types of T cells in the induction and maintenance of transplant tolerance has been unclear.

To address this issue, the BIDMC transplant immunology team, led by Strom and Maria Koulmanda, PhD, Associate Professor of Surgery at HMS, first created two mouse models – one that would express natural Treg cells (nTreg) in a fluorescent green protein and another in which Teff cells express a fluorescent red protein. (A third color, yellow, also came into play when the red effector T cells commit to the induced Treg phenotype, expressing both red and green fluorescent proteins and thereby appearing as yellow cells. This approach enables ready distinction between natural and induced Treg cells.)

The BIDMC investigators then partnered with a group of physicists at Massachusetts General Hospital led by Charles Lin, PhD. Lin and his team had developed a novel imaging technique that coupled in vivo flow cytometry with endoscopic confocal microscopy.

"Genetically mismatched insulin-producing islet cells were transplanted beneath the thin capsule surrounding the animals' kidneys," explains Koulmanda. "Infiltration of T cells into the transplant was then visualized in untreated recipient mice in which vigorous rejection occurred. These results were then compared with mice that had received a short course of treatment enabling them to permanently accept the transplant [i.e. immune tolerance]."

Using the new imaging process, the authors were able to clearly see that the ratio of protective T cells to destructive T cells differed markedly in the transplant tolerant mice compared with the mice in which transplant tissue was rejected. Among the "rejection mice," red cells rushed into the transplant far in advance of infiltration into the transplant by the tolerance hosts.

"As the events of rejection proceeded, the number of transplanted infiltrating T cells vastly exceeded those present in the tolerant transplants, even though the numbers of 'protective' yellow and green cells were equal in these groups at a later point in time," explains Koulmanda. "This is the first time that we have been able to monitor transplanted allograft tissue in a live lab animal. While static images of cells have been captured in the past, our new method captures much more than just random snapshots of the process."

"A picture really is worth a thousand words," adds Strom. "By enabling us to visualize this process, this new system has given us a clearer understanding of both quantitative and qualitative characteristics of the CD4 T cell response to allografts in rejecting and tolerized hosts. Fourteen days post-transplant, we were able to witness as costimulation blockade-based therapy inhibited infiltration by [the fluorescent red] Teff cells. Given the effectiveness of these tools, we hope to construct a road map such that we can create drug-free transplant tolerance for our patients in the future."

In addition to Strom, Koulmanda and Lin, coauthors include BIDMC investigators Zhigang Fan, Yan Lu, Gurbakhshish Singh and Vasilis Toxavidis; and MGH investigators Joel Spencer, Costas Pitsillides; Pilhan Kim and Seok Yun.

This study was supported, in part, by the National Institutes of Health and by the Juvenile Diabetes Research Foundation.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks in the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and a research partner of the Harvard/Dana-Farber Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu
http://www.bidmc.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>