Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colombian guerrillas help scientists locate literacy in the brain

16.10.2009
A unique study of former guerrillas in Colombia has helped scientists redefine their understanding of the key regions of the brain involved in literacy. The study, funded by the Wellcome Trust and the Spanish Ministry of Education and Science, has enabled the researchers to see how brain structure changed after learning to read.

Language is a uniquely human ability that evolved at some point in the six million years since humans and chimpanzees diverged. Even without being taught or having adults to copy, children develop sophisticated language systems. In contrast, reading is a learnt skill that does not develop without intensive tuition and practice.

Understanding how our brain structures change as we learn to read has proved difficult as the majority of people learn to read when they are children, at the same time as learning many other skills. Separating the changes caused by reading from those caused by, for example, learning social skills or how to play football, is almost impossible. Studying adult learners is also challenging because in most educated societies adult illiteracy is typically the result of learning impairments or poor health.

In today's edition of Nature, researchers from the UK, Spain and Colombia describe a study working with an unusual cohort: former guerrillas in Colombia who are re-integrating into mainstream society and learning to read for the first time as adults.

"Separating out changes in our brains caused by learning to read has so far proven almost impossible because of other confounding factors," explains Professor Cathy Price, a Wellcome Trust Senior Research Fellow at UCL (University College London). "Working with the former Colombia guerrillas has provided a unique opportunity to see how the brain develops when reading skills are acquired."

The researchers examined magnetic resonance imaging (MRI) scans of the brains of twenty guerrillas who had completed a literacy programme in their native tongue (Spanish) in adulthood. They compared these to scans of twenty-two similar adults prior to commencing the same literacy programme. The results revealed which brain areas are special for reading, prompting new research in the UK on how these regions are connected in adults who learn to read in childhood.

The researchers found that for those participants who had learnt to read, the density of grey matter (where the 'processing' is done) was higher in several areas of the left hemisphere of the brain. As might be expected, these were the areas that are responsible for recognising letter shapes and translating the letters into speech sounds and their meanings. Reading also increased the strength of the 'white matter' connections between the different processing regions.

Particularly important were the connections to and from an area of the brain known as the angular gyrus. Scientists have known for over 150 years that this brain region is important for reading, but the new research has shown that its role had been misunderstood.

Previously, it was thought that the angular gyrus recognised the shapes of words prior to finding their sounds and meanings. In fact, the researchers showed that the angular gyrus is not directly involved in translating visual words into their sounds and meanings. Instead, it supports this process by providing predictions of what the brain is expecting to see.

"The traditional view has been that the angular gyrus acts as a 'dictionary' that translates the letters of a word into a meaning." explains Professor Price. "In fact, we have shown that its role is more in anticipating what our eye will see – more akin to the predictive texting function on a mobile phone."

The findings are likely to prove useful for researchers trying to understand the causes of the reading disorder dyslexia. Studies of dyslexics have shown regions of reduced grey and white matter in regions that grow after learning to read. The new study suggests that some of the differences seen in dyslexia may be a consequence of reading difficulties rather than a cause.

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>