Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colombian guerrillas help scientists locate literacy in the brain

16.10.2009
A unique study of former guerrillas in Colombia has helped scientists redefine their understanding of the key regions of the brain involved in literacy. The study, funded by the Wellcome Trust and the Spanish Ministry of Education and Science, has enabled the researchers to see how brain structure changed after learning to read.

Language is a uniquely human ability that evolved at some point in the six million years since humans and chimpanzees diverged. Even without being taught or having adults to copy, children develop sophisticated language systems. In contrast, reading is a learnt skill that does not develop without intensive tuition and practice.

Understanding how our brain structures change as we learn to read has proved difficult as the majority of people learn to read when they are children, at the same time as learning many other skills. Separating the changes caused by reading from those caused by, for example, learning social skills or how to play football, is almost impossible. Studying adult learners is also challenging because in most educated societies adult illiteracy is typically the result of learning impairments or poor health.

In today's edition of Nature, researchers from the UK, Spain and Colombia describe a study working with an unusual cohort: former guerrillas in Colombia who are re-integrating into mainstream society and learning to read for the first time as adults.

"Separating out changes in our brains caused by learning to read has so far proven almost impossible because of other confounding factors," explains Professor Cathy Price, a Wellcome Trust Senior Research Fellow at UCL (University College London). "Working with the former Colombia guerrillas has provided a unique opportunity to see how the brain develops when reading skills are acquired."

The researchers examined magnetic resonance imaging (MRI) scans of the brains of twenty guerrillas who had completed a literacy programme in their native tongue (Spanish) in adulthood. They compared these to scans of twenty-two similar adults prior to commencing the same literacy programme. The results revealed which brain areas are special for reading, prompting new research in the UK on how these regions are connected in adults who learn to read in childhood.

The researchers found that for those participants who had learnt to read, the density of grey matter (where the 'processing' is done) was higher in several areas of the left hemisphere of the brain. As might be expected, these were the areas that are responsible for recognising letter shapes and translating the letters into speech sounds and their meanings. Reading also increased the strength of the 'white matter' connections between the different processing regions.

Particularly important were the connections to and from an area of the brain known as the angular gyrus. Scientists have known for over 150 years that this brain region is important for reading, but the new research has shown that its role had been misunderstood.

Previously, it was thought that the angular gyrus recognised the shapes of words prior to finding their sounds and meanings. In fact, the researchers showed that the angular gyrus is not directly involved in translating visual words into their sounds and meanings. Instead, it supports this process by providing predictions of what the brain is expecting to see.

"The traditional view has been that the angular gyrus acts as a 'dictionary' that translates the letters of a word into a meaning." explains Professor Price. "In fact, we have shown that its role is more in anticipating what our eye will see – more akin to the predictive texting function on a mobile phone."

The findings are likely to prove useful for researchers trying to understand the causes of the reading disorder dyslexia. Studies of dyslexics have shown regions of reduced grey and white matter in regions that grow after learning to read. The new study suggests that some of the differences seen in dyslexia may be a consequence of reading difficulties rather than a cause.

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>