Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colombian guerrillas help scientists locate literacy in the brain

16.10.2009
A unique study of former guerrillas in Colombia has helped scientists redefine their understanding of the key regions of the brain involved in literacy. The study, funded by the Wellcome Trust and the Spanish Ministry of Education and Science, has enabled the researchers to see how brain structure changed after learning to read.

Language is a uniquely human ability that evolved at some point in the six million years since humans and chimpanzees diverged. Even without being taught or having adults to copy, children develop sophisticated language systems. In contrast, reading is a learnt skill that does not develop without intensive tuition and practice.

Understanding how our brain structures change as we learn to read has proved difficult as the majority of people learn to read when they are children, at the same time as learning many other skills. Separating the changes caused by reading from those caused by, for example, learning social skills or how to play football, is almost impossible. Studying adult learners is also challenging because in most educated societies adult illiteracy is typically the result of learning impairments or poor health.

In today's edition of Nature, researchers from the UK, Spain and Colombia describe a study working with an unusual cohort: former guerrillas in Colombia who are re-integrating into mainstream society and learning to read for the first time as adults.

"Separating out changes in our brains caused by learning to read has so far proven almost impossible because of other confounding factors," explains Professor Cathy Price, a Wellcome Trust Senior Research Fellow at UCL (University College London). "Working with the former Colombia guerrillas has provided a unique opportunity to see how the brain develops when reading skills are acquired."

The researchers examined magnetic resonance imaging (MRI) scans of the brains of twenty guerrillas who had completed a literacy programme in their native tongue (Spanish) in adulthood. They compared these to scans of twenty-two similar adults prior to commencing the same literacy programme. The results revealed which brain areas are special for reading, prompting new research in the UK on how these regions are connected in adults who learn to read in childhood.

The researchers found that for those participants who had learnt to read, the density of grey matter (where the 'processing' is done) was higher in several areas of the left hemisphere of the brain. As might be expected, these were the areas that are responsible for recognising letter shapes and translating the letters into speech sounds and their meanings. Reading also increased the strength of the 'white matter' connections between the different processing regions.

Particularly important were the connections to and from an area of the brain known as the angular gyrus. Scientists have known for over 150 years that this brain region is important for reading, but the new research has shown that its role had been misunderstood.

Previously, it was thought that the angular gyrus recognised the shapes of words prior to finding their sounds and meanings. In fact, the researchers showed that the angular gyrus is not directly involved in translating visual words into their sounds and meanings. Instead, it supports this process by providing predictions of what the brain is expecting to see.

"The traditional view has been that the angular gyrus acts as a 'dictionary' that translates the letters of a word into a meaning." explains Professor Price. "In fact, we have shown that its role is more in anticipating what our eye will see – more akin to the predictive texting function on a mobile phone."

The findings are likely to prove useful for researchers trying to understand the causes of the reading disorder dyslexia. Studies of dyslexics have shown regions of reduced grey and white matter in regions that grow after learning to read. The new study suggests that some of the differences seen in dyslexia may be a consequence of reading difficulties rather than a cause.

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>