Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collapse of helium’s chemical nobility predicted by Polish chemist

24.11.2008
140 years since its discovery, and despite the best endeavours of many scientists, helium, the lightest of the 'noble' gases, still stubbornly refuses to enter into any chemical alliance. now a new glimmer of hope has emerged from poland as a chemist at the university of warsaw has calculated that two new compounds containing a helium-oxygen bond could be formed.

Considered to be the smallest, most chemically inert and least polarizable of the 117 known chemical elements, helium has been challenging chemists for generations. unfortunately, no-one has managed to confirm experimentally the existence of either hebeo1 or hhef2, two important species previously predicted, nor a number of others.

The two new molecular species to bind helium to oxygen, predicted using theory, csfheo and nme4fheo (fig.2), are derivatives of a metastable [f– heo] anion first theorized in 2005 by a group from taiwan led by prof. hu. the scientist responsible for performing these new quantum chemical calculations is dr wojciech grochala from icm and the faculty of chemistry, the university of warsaw. speaking of his results, dr grochala said, "the molecules are not as peculiar as they might appear at first light; the idea is to preserve the metastable character of the fragile [f– heo] entity by attaching it to a weakly coordinating cation (such as cs+ or nme4 +) to achieve electric neutrality.

The resulting species exhibit a he–o bond with an electronic dissociation energy on the singlet potential energy surface (pes) as large as half an ev for the tetramethylammonium derivative." unfortunately, the kinetic stability of the molecules in question is limited by a crossing of the singlet–triplet pess and additionally by facile decomposition along the bending channel, both factors considerably limiting their lifetime. the implication for a realworld search for these molecules is that they should besought at a temperature of a few kelvin at most. commenting on how this could be achieved, dr grochala said, "the synthesis of both species might begin with the unusual hypofluorites, csof and nme4of, embedded in an ultracold helium droplet.

Laser excitation of the o–f chemical bond should allow for insertion of a helium atom into the bond and for spectroscopic observation of the short– living molecules. of course, such experiments are quite challenging but this is what makes modern chemistry so much fun". he added, "despite various difficulties i am really excited about the predictions".

Wojciech Grochala | alfa
Further information:
http://www.uw.edu.pl/en/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>