Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collagen for the knee

25.04.2014

Cartilage damage is the most common form of joint disease. Recently, the German biotechnology company Amedrix has developed collagen implants for damaged cartilage that allow cells from surrounding tissues to migrate into the implants. The processes for collagen purification as well as GMP-compliant manufacturing of the collagen implants were developed in cooperation with the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB.

Five million people suffer cartilage damage to the knee every year in Germany. Cartilage injuries are not only painful; they can lead to osteoarthritis decades later. In the course of the disease, the protective shock absorbing cartilage that covers the bone within the joint slowly is removed until the bone is finally exposed, typically requiring an artificial joint replacement.


Collagen for company Amedrix is processed in the GMP-unit at the Fraunhofer IGB.

© Fraunhofer IGB


The liquid collagen implant is arthroscopically injected with a special syringe.

© Fraunhofer IGB

An early alternative to the artificial knee joint are biological therapies, such as autologous chondrocyte implantation (ACI), where chondrocytes are isolated from a small piece of cartilage of the patient, expanded in the laboratory and after three weeks implanted into the defect, often in combination with a shaping matrix.

Over time, the implanted cells will reconstruct the matrix until the injured cartilage is completely regenerated. However, the cost of treatment is high and not always fully reimbursed by health insurance. In addition, two surgical interventions are always required: one to remove the cartilage cells and a second to implant the proliferated cells.

The German biotechnology company Amedrix GmbH developed a one-step minimally-invasive surgical procedure for the treatment of cartilage defects using their cell-free collagen implants – with comparable good autoregeneration of the cartilage defects. Their first gel-like implant was approved for the European market in 2012. In December 2013 a further development of this product, a liquid application form, received European CE certification, which ensures that the implant is safe and medically-technically efficient.

"Our new product is arthroscopically injected as a liquid collagen implant. Once injected, the liquid collagen forms a stable cartilage replacement in minutes", describes Dr. Thomas Graeve, CEO of Amedrix. After injection, cartilage and stem cells from the surrounding tissue migrate into the implant and stimulate the self-healing of the cartilage. Within a short time, the result is a new and resilient cartilage. “Patient MRI studies show that the cartilage defect is nearly completely filled after six months", says Graeve.

In order to optimize the purification and manufacturing process according to current legal regulations, Amedrix cooperates with the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart. The institute supports a 215-square-meter Good Manufacturing Practice (GMP) unit certified for developing production processes for medical devices or cell-based tissue-engineered products.

"Our specially trained staff work together with Amedrix employees to isolate collagen protein from animal tendons and then process the collagen in the IGB clean rooms," explains Markus Schandar, head of the GMP Group.

The Fraunhofer IGB has also applied for the manufacturing authorization of medicinal products on behalf of industrial partners. "Previously, we have developed GMP processes for autologous endothelial cells for the colonization of a vascular prostheses, autologous cartilage grafts and autologous bone marrow stem cells for regenerative medicine under GMP conditions and according to the guidelines of the Medicines Act", according to Schandar.

Markus Schandar | Fraunhofer-Institute
Further information:
http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/collagen-knee.html

Further reports about: Biotechnology Collagen GMP IGB Interfacial MRI cartilage damage protein

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>