Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collagen for the knee

25.04.2014

Cartilage damage is the most common form of joint disease. Recently, the German biotechnology company Amedrix has developed collagen implants for damaged cartilage that allow cells from surrounding tissues to migrate into the implants. The processes for collagen purification as well as GMP-compliant manufacturing of the collagen implants were developed in cooperation with the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB.

Five million people suffer cartilage damage to the knee every year in Germany. Cartilage injuries are not only painful; they can lead to osteoarthritis decades later. In the course of the disease, the protective shock absorbing cartilage that covers the bone within the joint slowly is removed until the bone is finally exposed, typically requiring an artificial joint replacement.


Collagen for company Amedrix is processed in the GMP-unit at the Fraunhofer IGB.

© Fraunhofer IGB


The liquid collagen implant is arthroscopically injected with a special syringe.

© Fraunhofer IGB

An early alternative to the artificial knee joint are biological therapies, such as autologous chondrocyte implantation (ACI), where chondrocytes are isolated from a small piece of cartilage of the patient, expanded in the laboratory and after three weeks implanted into the defect, often in combination with a shaping matrix.

Over time, the implanted cells will reconstruct the matrix until the injured cartilage is completely regenerated. However, the cost of treatment is high and not always fully reimbursed by health insurance. In addition, two surgical interventions are always required: one to remove the cartilage cells and a second to implant the proliferated cells.

The German biotechnology company Amedrix GmbH developed a one-step minimally-invasive surgical procedure for the treatment of cartilage defects using their cell-free collagen implants – with comparable good autoregeneration of the cartilage defects. Their first gel-like implant was approved for the European market in 2012. In December 2013 a further development of this product, a liquid application form, received European CE certification, which ensures that the implant is safe and medically-technically efficient.

"Our new product is arthroscopically injected as a liquid collagen implant. Once injected, the liquid collagen forms a stable cartilage replacement in minutes", describes Dr. Thomas Graeve, CEO of Amedrix. After injection, cartilage and stem cells from the surrounding tissue migrate into the implant and stimulate the self-healing of the cartilage. Within a short time, the result is a new and resilient cartilage. “Patient MRI studies show that the cartilage defect is nearly completely filled after six months", says Graeve.

In order to optimize the purification and manufacturing process according to current legal regulations, Amedrix cooperates with the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart. The institute supports a 215-square-meter Good Manufacturing Practice (GMP) unit certified for developing production processes for medical devices or cell-based tissue-engineered products.

"Our specially trained staff work together with Amedrix employees to isolate collagen protein from animal tendons and then process the collagen in the IGB clean rooms," explains Markus Schandar, head of the GMP Group.

The Fraunhofer IGB has also applied for the manufacturing authorization of medicinal products on behalf of industrial partners. "Previously, we have developed GMP processes for autologous endothelial cells for the colonization of a vascular prostheses, autologous cartilage grafts and autologous bone marrow stem cells for regenerative medicine under GMP conditions and according to the guidelines of the Medicines Act", according to Schandar.

Markus Schandar | Fraunhofer-Institute
Further information:
http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/collagen-knee.html

Further reports about: Biotechnology Collagen GMP IGB Interfacial MRI cartilage damage protein

More articles from Life Sciences:

nachricht Protein scaffold
27.05.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Seeing the action
27.05.2015 | University of California - Santa Barbara

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Researchers develop intelligent handheld robots

27.05.2015 | Power and Electrical Engineering

"Hidden" fragrance compound can cause contact allergy

27.05.2015 | Health and Medicine

Supernovas help 'clean' galaxies

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>