Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collagen for the knee

25.04.2014

Cartilage damage is the most common form of joint disease. Recently, the German biotechnology company Amedrix has developed collagen implants for damaged cartilage that allow cells from surrounding tissues to migrate into the implants. The processes for collagen purification as well as GMP-compliant manufacturing of the collagen implants were developed in cooperation with the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB.

Five million people suffer cartilage damage to the knee every year in Germany. Cartilage injuries are not only painful; they can lead to osteoarthritis decades later. In the course of the disease, the protective shock absorbing cartilage that covers the bone within the joint slowly is removed until the bone is finally exposed, typically requiring an artificial joint replacement.


Collagen for company Amedrix is processed in the GMP-unit at the Fraunhofer IGB.

© Fraunhofer IGB


The liquid collagen implant is arthroscopically injected with a special syringe.

© Fraunhofer IGB

An early alternative to the artificial knee joint are biological therapies, such as autologous chondrocyte implantation (ACI), where chondrocytes are isolated from a small piece of cartilage of the patient, expanded in the laboratory and after three weeks implanted into the defect, often in combination with a shaping matrix.

Over time, the implanted cells will reconstruct the matrix until the injured cartilage is completely regenerated. However, the cost of treatment is high and not always fully reimbursed by health insurance. In addition, two surgical interventions are always required: one to remove the cartilage cells and a second to implant the proliferated cells.

The German biotechnology company Amedrix GmbH developed a one-step minimally-invasive surgical procedure for the treatment of cartilage defects using their cell-free collagen implants – with comparable good autoregeneration of the cartilage defects. Their first gel-like implant was approved for the European market in 2012. In December 2013 a further development of this product, a liquid application form, received European CE certification, which ensures that the implant is safe and medically-technically efficient.

"Our new product is arthroscopically injected as a liquid collagen implant. Once injected, the liquid collagen forms a stable cartilage replacement in minutes", describes Dr. Thomas Graeve, CEO of Amedrix. After injection, cartilage and stem cells from the surrounding tissue migrate into the implant and stimulate the self-healing of the cartilage. Within a short time, the result is a new and resilient cartilage. “Patient MRI studies show that the cartilage defect is nearly completely filled after six months", says Graeve.

In order to optimize the purification and manufacturing process according to current legal regulations, Amedrix cooperates with the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart. The institute supports a 215-square-meter Good Manufacturing Practice (GMP) unit certified for developing production processes for medical devices or cell-based tissue-engineered products.

"Our specially trained staff work together with Amedrix employees to isolate collagen protein from animal tendons and then process the collagen in the IGB clean rooms," explains Markus Schandar, head of the GMP Group.

The Fraunhofer IGB has also applied for the manufacturing authorization of medicinal products on behalf of industrial partners. "Previously, we have developed GMP processes for autologous endothelial cells for the colonization of a vascular prostheses, autologous cartilage grafts and autologous bone marrow stem cells for regenerative medicine under GMP conditions and according to the guidelines of the Medicines Act", according to Schandar.

Markus Schandar | Fraunhofer-Institute
Further information:
http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/collagen-knee.html

Further reports about: Biotechnology Collagen GMP IGB Interfacial MRI cartilage damage protein

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>