Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaborative research sheds light on new cancer stem cell therapies

30.01.2012
A collaborative anti-cancer research jointly conducted by The Hong Kong Polytechnic University (PolyU), Peking University Shenzhen Graduate School and Nevada Cancer Institute has led to the development of a novel class of chemical inhibitors that specifically target cancer cells with pluripotency.
This cutting-edge research has combined the effort of three research teams including one led by Dr Tao Ye (—tŸ·), Associate Professor of PolyUfs Department of Applied Biology and Chemical Technology. This breakthrough may help the selective removal of cancer stem cells and potentially provide a novel strategy to eradicate cancers.

Cancer is a major cause of human death in China and all around the world. It is difficult to treat cause of the existence of cancer initiating cells/cancer stem cells. Although they exist in very few in numbers, cancer stem cells (CSCs) can proliferate and self-renew, and are pluripotent and multipotent, which have the capability to differentiate into various more heterogeneous cancer cells that constitute the entire tumor mass. As stem cells, they are more resistant to most conventional cancer therapies such as chemotherapy or radiotherapy due to their differences in the cell cycle regulation and DNA repair processes.
They also act as the source for metastasis and recurring drug resistant cancers after conventional cancer therapy. Currently, there are no chemical inhibitors or other agents that can specifically and selectively target cancer stem cells. The development of compounds that target cancer stem cells is an unmet medical demand for the eradication of malignant cancers.

According to Dr Ye, the potential clinical applications of new LSD1 inhibitors include the following:

(1) They can be used to treat malignant germ cell tumors such as teratoma/teratocarcinomas, embryonic carcinomas, seminomas, choriocarcinomas, and tumors of yolk sac. These tumors are usually treated by surgery or cis-platinum, but after initial treatment, these tumors always become resistant to platinum drugs. So far, the LSD1 inhibitors are highly effective towards these pluriptont cancers with stem cell properties.

(2) The LSD1 inhibitors may also be used to remove teratomas/embryonic carcinomas during stem cell-based therapy. One major problem in stem/iPS cell-based therapy is the formation of embryonic carcinomas, teratomas, or teratocarcinomas by incomplete differentiation of ES/iPS cells in the organs of recipients. Because LSD1 selectively inhibit these pluripotent embryonic carcinomas, teratomas, or teratocarcinomas, LSD1 inhibitors may help ensure the successful application of stem cell-based therapy.

(3) More importantly, since teratomas/embryonic carcinomas are pluripotent cancer stem cells, researchers will probe whether cancer stem cells of other types of major organ-specific cancers such as breast, ovarian, lung, and brain cancers are sensitive to these LSD1 inhibitors. Further studies indicated that LSD1 inhibitors can also be used to inhibit many cancer stem cell-like cells such as breast and ovarian cancers.

A leading scientist in the field of chemical biology, Dr Tao Ye has obtained large amounts of funding from the Research Grants Council to carry out basic research. Since 2010, his research activities have culminated in the publication of 12 original research papers in top research journals with an impact factor greater than five.

Dr Tao Yefs anti-cancer drug discovery programme was also supported by the generous donation of Fong Shu Fook Tong Foundation and Joyce M. Kuok Foundation.

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.nature.com/nchina/2012/120104/full/nchina.2012.1.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>