Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaborative research sheds light on new cancer stem cell therapies

30.01.2012
A collaborative anti-cancer research jointly conducted by The Hong Kong Polytechnic University (PolyU), Peking University Shenzhen Graduate School and Nevada Cancer Institute has led to the development of a novel class of chemical inhibitors that specifically target cancer cells with pluripotency.
This cutting-edge research has combined the effort of three research teams including one led by Dr Tao Ye (—tŸ·), Associate Professor of PolyUfs Department of Applied Biology and Chemical Technology. This breakthrough may help the selective removal of cancer stem cells and potentially provide a novel strategy to eradicate cancers.

Cancer is a major cause of human death in China and all around the world. It is difficult to treat cause of the existence of cancer initiating cells/cancer stem cells. Although they exist in very few in numbers, cancer stem cells (CSCs) can proliferate and self-renew, and are pluripotent and multipotent, which have the capability to differentiate into various more heterogeneous cancer cells that constitute the entire tumor mass. As stem cells, they are more resistant to most conventional cancer therapies such as chemotherapy or radiotherapy due to their differences in the cell cycle regulation and DNA repair processes.
They also act as the source for metastasis and recurring drug resistant cancers after conventional cancer therapy. Currently, there are no chemical inhibitors or other agents that can specifically and selectively target cancer stem cells. The development of compounds that target cancer stem cells is an unmet medical demand for the eradication of malignant cancers.

According to Dr Ye, the potential clinical applications of new LSD1 inhibitors include the following:

(1) They can be used to treat malignant germ cell tumors such as teratoma/teratocarcinomas, embryonic carcinomas, seminomas, choriocarcinomas, and tumors of yolk sac. These tumors are usually treated by surgery or cis-platinum, but after initial treatment, these tumors always become resistant to platinum drugs. So far, the LSD1 inhibitors are highly effective towards these pluriptont cancers with stem cell properties.

(2) The LSD1 inhibitors may also be used to remove teratomas/embryonic carcinomas during stem cell-based therapy. One major problem in stem/iPS cell-based therapy is the formation of embryonic carcinomas, teratomas, or teratocarcinomas by incomplete differentiation of ES/iPS cells in the organs of recipients. Because LSD1 selectively inhibit these pluripotent embryonic carcinomas, teratomas, or teratocarcinomas, LSD1 inhibitors may help ensure the successful application of stem cell-based therapy.

(3) More importantly, since teratomas/embryonic carcinomas are pluripotent cancer stem cells, researchers will probe whether cancer stem cells of other types of major organ-specific cancers such as breast, ovarian, lung, and brain cancers are sensitive to these LSD1 inhibitors. Further studies indicated that LSD1 inhibitors can also be used to inhibit many cancer stem cell-like cells such as breast and ovarian cancers.

A leading scientist in the field of chemical biology, Dr Tao Ye has obtained large amounts of funding from the Research Grants Council to carry out basic research. Since 2010, his research activities have culminated in the publication of 12 original research papers in top research journals with an impact factor greater than five.

Dr Tao Yefs anti-cancer drug discovery programme was also supported by the generous donation of Fong Shu Fook Tong Foundation and Joyce M. Kuok Foundation.

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.nature.com/nchina/2012/120104/full/nchina.2012.1.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>