Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaboration Solves Structure of Herpes Virus Protein, Provides New Drug Directions

27.07.2010
The mechanism by which a herpes virus invades cells has remained a mystery to scientists, but now research from Tufts University and the University of Pennsylvania reveals the unusual structure of a key member of the protein complex that allows a herpes virus to invade cells.

The new map details an essential piece of the herpes virus “cell-entry machinery,” providing scientists with a new target for antiviral drugs.

The research was published online in the journal Nature Structural & Molecular Biology.

Researchers at Tufts and Penn used X-ray crystallography along with cell microscopy techniques to study the structure and function of the cell-entry protein fusion events carried out by HSV-2. The research has resulted in a map of an important protein complex required to trigger herpes virus infection, setting the stage for new therapeutics that may prevent the virus's access to cells.

Most viruses need cell-entry proteins called fusogens in order to invade cells. Scientists have known that the herpes virus fusogen does not act alone, requiring a complex of two other viral cell-entry proteins. In this study, researchers determined the structure of this key protein complex and realized it did not resemble the structure of other known fusogens.

“This unexpected result leads us to believe that this protein complex is not a fusogen itself but that it regulates the fusogen,” said senior author Ekaterina Heldwein, assistant professor of molecular and microbiology at Tufts University School of Medicine. “We also found that certain antibodies interfere with the ability of this protein complex to bind to the fusogen, evidence that antiviral drugs that target this interaction could prevent viral infection.”

“We hope that determining the structure of this essential piece of the herpes virus cell-entry machinery will help us answer some of the many questions about how herpes virus initiates infection,” said first author Tirumala K. Chowdary, a postdoctoral associate at Tufts. “Knowing the structures of cell-entry proteins will help us find the best strategy for interfering with this pervasive family of viruses.”

There is no cure for herpes viruses. Upon infection, the viruses remain in the body for life and can stay inactive for long periods of time. When active, however, different herpes viruses can cause cold sores, blindness, encephalitis or cancers. More than half of Americans are infected with herpes simplex virus type 1, HSV-1, by the time they reach their 20s. About one in six Americans is infected with herpes simplex virus type 2, HSV-2, which is the virus responsible for genital herpes. Complications of HSV-2, a sexually-transmitted disease, include recurrent painful genital sores, psychological distress and, if transmitted from mother to child, potentially fatal infections in newborns.

Herpes viruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpes viruses inexplicably require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but, unlike other members of its class, it does not function alone.

“We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2,” said Roselyn J. Eisenberg, professor of microbiology at the University of Pennsylvania School of Veterinary Medicine. “gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen.”

“We propose that gH-gL activates gB for fusion, possibly through direct binding,” said Gary Cohen, professor of microbiology at the University of Pennsylvania School of Dental Medicine. “Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.”

The study was conducted by Heldwein and Chowdary of Tufts School of Medicine; Cohen, Tina Cairns and Doina Atanasiu of the Department of Microbiology at Penn Dental Medicine; and Eisenberg at Penn Vet.

Research was funded by the National Institutes of Health, the National Institute of Allergy and Infectious Diseases and the Pew Scholar Program in Biomedical Sciences.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>