Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaboration Solves Structure of Herpes Virus Protein, Provides New Drug Directions

27.07.2010
The mechanism by which a herpes virus invades cells has remained a mystery to scientists, but now research from Tufts University and the University of Pennsylvania reveals the unusual structure of a key member of the protein complex that allows a herpes virus to invade cells.

The new map details an essential piece of the herpes virus “cell-entry machinery,” providing scientists with a new target for antiviral drugs.

The research was published online in the journal Nature Structural & Molecular Biology.

Researchers at Tufts and Penn used X-ray crystallography along with cell microscopy techniques to study the structure and function of the cell-entry protein fusion events carried out by HSV-2. The research has resulted in a map of an important protein complex required to trigger herpes virus infection, setting the stage for new therapeutics that may prevent the virus's access to cells.

Most viruses need cell-entry proteins called fusogens in order to invade cells. Scientists have known that the herpes virus fusogen does not act alone, requiring a complex of two other viral cell-entry proteins. In this study, researchers determined the structure of this key protein complex and realized it did not resemble the structure of other known fusogens.

“This unexpected result leads us to believe that this protein complex is not a fusogen itself but that it regulates the fusogen,” said senior author Ekaterina Heldwein, assistant professor of molecular and microbiology at Tufts University School of Medicine. “We also found that certain antibodies interfere with the ability of this protein complex to bind to the fusogen, evidence that antiviral drugs that target this interaction could prevent viral infection.”

“We hope that determining the structure of this essential piece of the herpes virus cell-entry machinery will help us answer some of the many questions about how herpes virus initiates infection,” said first author Tirumala K. Chowdary, a postdoctoral associate at Tufts. “Knowing the structures of cell-entry proteins will help us find the best strategy for interfering with this pervasive family of viruses.”

There is no cure for herpes viruses. Upon infection, the viruses remain in the body for life and can stay inactive for long periods of time. When active, however, different herpes viruses can cause cold sores, blindness, encephalitis or cancers. More than half of Americans are infected with herpes simplex virus type 1, HSV-1, by the time they reach their 20s. About one in six Americans is infected with herpes simplex virus type 2, HSV-2, which is the virus responsible for genital herpes. Complications of HSV-2, a sexually-transmitted disease, include recurrent painful genital sores, psychological distress and, if transmitted from mother to child, potentially fatal infections in newborns.

Herpes viruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpes viruses inexplicably require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but, unlike other members of its class, it does not function alone.

“We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2,” said Roselyn J. Eisenberg, professor of microbiology at the University of Pennsylvania School of Veterinary Medicine. “gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen.”

“We propose that gH-gL activates gB for fusion, possibly through direct binding,” said Gary Cohen, professor of microbiology at the University of Pennsylvania School of Dental Medicine. “Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.”

The study was conducted by Heldwein and Chowdary of Tufts School of Medicine; Cohen, Tina Cairns and Doina Atanasiu of the Department of Microbiology at Penn Dental Medicine; and Eisenberg at Penn Vet.

Research was funded by the National Institutes of Health, the National Institute of Allergy and Infectious Diseases and the Pew Scholar Program in Biomedical Sciences.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

nachricht Exposure to fracking chemicals and wastewater spurs fat cell development
22.06.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>