Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold Spring Harbor Protocols features chromosomal rearrangement, gene copy number methods

02.09.2010
Both methods are helpful for investigating the genetic basis of cancer

A cell devotes a significant amount of effort to maintaining the stability of its genome, preventing the sorts of chromosomal rearrangements characteristic of many cancers.

Assays that measure the rate of gross chromosomal rearrangements (GCRs) are needed in order to understand the individual genes and the different pathways that suppress genomic instability. In the September issue of Cold Spring Harbor Protocols, Richard Kolodner and colleagues from the University of California, San Diego's Ludwig Institute for Cancer Research present "Determination of Gross Chromosomal Rearrangement Rates," a genetic assay to quantitatively measure the rate at which GCRs occur in yeast cells.

The assay measures the rate of simultaneous inactivation of two markers placed on a nonessential end of a yeast chromosome. This simple protocol for determining GCR mutation rates in a variety of genetic backgrounds coupled with a diversity of modified GCR assays has provided tremendous insight into the large numbers of pathways that suppress genomic instability in yeast and appear to be relevant to cancer suppression pathways in humans. This featured protocol is freely available on the journal's website.

Large segments of DNA can vary in copy number between individuals. Such copy number variations (CNVs) contribute greatly to genetic diversity and are also thought to be associated with susceptibility or resistance to some diseases, including cancer. "Simple Copy Number Determination with Reference Query Pyrosequencing (RQPS)," featured in the September issue of Cold Spring Harbor Protocols, provides an assay for determining the copy number of any allele in the genome. The method, from Raphael Kopan and colleagues at Washington University, takes advantage of the fact that pyrosequencing can accurately measure the ratio of DNA fragments in a mixture that differ by a single nucleotide. A reference allele with a known copy number and a query allele with an unknown copy number are engineered with single nucleotide variations, and the ratio seen between these probes and genomic DNA reflects the copy number. RQPS can be used to measure copy number of any transgene, differentiate homozygotes from heterozygotes, detect the CNV of endogenous genes, and screen embryonic stem cells targeted with bacterial artificial chromosome (BAC) vectors. RQPS is rapid, inexpensive, sensitive, and adaptable to high-throughput approaches. The article is freely available on the journal's website.

About Cold Spring Harbor Protocols: Cold Spring Harbor Protocols (www.cshprotocols.org) is a monthly peer-reviewed journal of methods used in a wide range of biology laboratories. It is structured to be highly interactive, with each protocol cross-linked to related methods, descriptive information panels, and illustrative material to maximize the total information available to investigators. Each protocol is clearly presented and designed for easy use at the bench—complete with reagents, equipment, and recipe lists. Life science researchers can access the entire collection via institutional site licenses, and can add their suggestions and comments to further refine the techniques.

About Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. Since 1933, it has furthered the advance and spread of scientific knowledge in all areas of genetics and molecular biology, including cancer biology, plant science, bioinformatics, and neurobiology. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com.

David Crotty | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CNV DNA GCR Protocols RQPS cold fusion determination embryonic stem cell genomic instability

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>