Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive dysfunction reversed in mouse model of Down syndrome

20.11.2009
A study by neuroscientist William C. Mobley, MD, PhD, chair of the Department of Neurosciences at the University of California, San Diego School of Medicine, and colleagues at Stanford University Medical School has demonstrated a possible new approach to slowing the inevitable progression of cognitive decline found in Down's syndrome.

The study, published in Science Translational Medicine on November 18, revealed two important new findings about Down's syndrome in a mouse model: 1) there is evidence that synaptic terminals involved in neurotransmission are damaged long before the cells show degeneration; and 2) while cell signaling is damaged, the receptors are not, but are functioning and still trying to find signals.

"If we focus only on damage to cell bodies, we underestimate the importance of timing and the potential window for treatment of Down's syndrome," said Mobley, one of the nation's leading experts in the disease. He added that this study in mice shows some of the early changes to neurons, which are "really quite dramatic," and may point the way to novel ways to treat Down's syndrome in adult patients.

Down's syndrome is a chromosomal disorder caused by the presence of all or part of an extra 21st chromosome, resulting in marked deficits in contextual learning and memory. Fifty years ago, the disorder was identified as a chromosome 21 trisomy, meaning that each cell in the body has three copies of chromosome 21 instead of the usual two.

Individuals with Down's syndrome tend to have a lower than average cognitive ability, and most who survive into middle age begin to show Alzheimer's-like dementia by age 50 or 60. The incidence of Down's syndrome is estimated at one in 733 live births in the U.S., or 5,000 affected infants each year; approximately 95% of these are trisomy 21. Until quite recently, it wasn't believed that scientists would ever be able to pinpoint the exact gene or genes that cause the disease.

The research team studied a mouse model with three copies of a fragment of mouse chromosome 16, having symptoms very similar to those in humans with Down's syndrome. Symptoms included significant cognitive deficits and dysfunction and degeneration of LC neurons (with origination in locus coeruleus). These damaged neurons use norepinephrine, which is a neurotransmitter, to pass impulses to receptors in the cortex and hippocampus – brain regions critical for learning, memory and attention.

"We found that, despite advanced LC degeneration, we could reverse contextual learning failure in these mice," said Mobley. Using a pro-drug for norepinephrine called L-DOPS or xamoterol, the scientists were able to restore neurotransmission in the mice, thus rescuing cognition. While it is yet to be determined if LC plays a role in contextual learning in humans, scientists know that these neurons are affected in other neurodegenerative diseases, including Alzheimer's disease.

In addition, the team identified the gene fragment in mice that is largely responsible for LC degeneration – a region of about 32 genes including APP 23, 24. In a knockout mouse model with the third copy of APP deleted, the decrease in LC neurons did not occur, suggesting that App over-expression is necessary for LC degeneration. However, deleting the extra copy did not restore normal contextual learning behavior.

"Simply deleting the third App doesn't fix the behavior, so probably other gene products play a role in Down's syndrome," said Mobley. "However, giving the pro-drug to the mice rescued cognitive behaviors in a very dramatic way."

He noted that a form of this drug is currently in clinical trials to treat fibromyalgia in humans. "The possibility is very real that such a therapy, if proven safe, would be effective in treating dementia in later-stage Down's syndrome patients."

Additional contributors include Paul Aisen and Steven L. Wagner, UC San Diego Department of Neurosciences; and A. Salehi, M. Faizi, D. Colas, J. Valletta, J. Laguna, R. Takimoto-Kimura, A. Kleschevnikov and M. Shamloo, Stanford University.

The work was supported by the National Institutes of Health, the Larry L. Hillblom Foundation, the Down's Syndrome Research and Treatment Foundation, the Thrasher Research Fund, the Adler Foundation and the Alzheimer's Association.

Please visit http://neurosciences.ucsd.edu/ after 2 p.m. ET November 18 to view an interview with William Mobley and Steve Wagner of the UC San Diego Department of Neurosciences, discussing these findings.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>