Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive dysfunction reversed in mouse model of Down syndrome

20.11.2009
A study by neuroscientist William C. Mobley, MD, PhD, chair of the Department of Neurosciences at the University of California, San Diego School of Medicine, and colleagues at Stanford University Medical School has demonstrated a possible new approach to slowing the inevitable progression of cognitive decline found in Down's syndrome.

The study, published in Science Translational Medicine on November 18, revealed two important new findings about Down's syndrome in a mouse model: 1) there is evidence that synaptic terminals involved in neurotransmission are damaged long before the cells show degeneration; and 2) while cell signaling is damaged, the receptors are not, but are functioning and still trying to find signals.

"If we focus only on damage to cell bodies, we underestimate the importance of timing and the potential window for treatment of Down's syndrome," said Mobley, one of the nation's leading experts in the disease. He added that this study in mice shows some of the early changes to neurons, which are "really quite dramatic," and may point the way to novel ways to treat Down's syndrome in adult patients.

Down's syndrome is a chromosomal disorder caused by the presence of all or part of an extra 21st chromosome, resulting in marked deficits in contextual learning and memory. Fifty years ago, the disorder was identified as a chromosome 21 trisomy, meaning that each cell in the body has three copies of chromosome 21 instead of the usual two.

Individuals with Down's syndrome tend to have a lower than average cognitive ability, and most who survive into middle age begin to show Alzheimer's-like dementia by age 50 or 60. The incidence of Down's syndrome is estimated at one in 733 live births in the U.S., or 5,000 affected infants each year; approximately 95% of these are trisomy 21. Until quite recently, it wasn't believed that scientists would ever be able to pinpoint the exact gene or genes that cause the disease.

The research team studied a mouse model with three copies of a fragment of mouse chromosome 16, having symptoms very similar to those in humans with Down's syndrome. Symptoms included significant cognitive deficits and dysfunction and degeneration of LC neurons (with origination in locus coeruleus). These damaged neurons use norepinephrine, which is a neurotransmitter, to pass impulses to receptors in the cortex and hippocampus – brain regions critical for learning, memory and attention.

"We found that, despite advanced LC degeneration, we could reverse contextual learning failure in these mice," said Mobley. Using a pro-drug for norepinephrine called L-DOPS or xamoterol, the scientists were able to restore neurotransmission in the mice, thus rescuing cognition. While it is yet to be determined if LC plays a role in contextual learning in humans, scientists know that these neurons are affected in other neurodegenerative diseases, including Alzheimer's disease.

In addition, the team identified the gene fragment in mice that is largely responsible for LC degeneration – a region of about 32 genes including APP 23, 24. In a knockout mouse model with the third copy of APP deleted, the decrease in LC neurons did not occur, suggesting that App over-expression is necessary for LC degeneration. However, deleting the extra copy did not restore normal contextual learning behavior.

"Simply deleting the third App doesn't fix the behavior, so probably other gene products play a role in Down's syndrome," said Mobley. "However, giving the pro-drug to the mice rescued cognitive behaviors in a very dramatic way."

He noted that a form of this drug is currently in clinical trials to treat fibromyalgia in humans. "The possibility is very real that such a therapy, if proven safe, would be effective in treating dementia in later-stage Down's syndrome patients."

Additional contributors include Paul Aisen and Steven L. Wagner, UC San Diego Department of Neurosciences; and A. Salehi, M. Faizi, D. Colas, J. Valletta, J. Laguna, R. Takimoto-Kimura, A. Kleschevnikov and M. Shamloo, Stanford University.

The work was supported by the National Institutes of Health, the Larry L. Hillblom Foundation, the Down's Syndrome Research and Treatment Foundation, the Thrasher Research Fund, the Adler Foundation and the Alzheimer's Association.

Please visit http://neurosciences.ucsd.edu/ after 2 p.m. ET November 18 to view an interview with William Mobley and Steve Wagner of the UC San Diego Department of Neurosciences, discussing these findings.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>