Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coenzyme rare to bacteria critical to Mycobacterium tuberculosis survival

25.03.2009
Coenzyme F420, a small molecule that helps certain enzymes transfer electrons, is found in microorganisms known as methane-producing archaea, some of which thrive in extreme environments.

It also helps the bacterium that causes tuberculosis (TB) to survive the defenses of the human immune system. Scientists have now discovered at least one way F420 helps to arm the pathogen.

The research will appear in the early online issue of the Proceedings of the National Academy of Science (PNAS) during the week of March 23, 2009, in the article, "Conversion of NO2 to NO by Reduced Coenzyme F420 Protects Mycobacteria from Nitrosative Damage," by Endang Purwantini and Biswarup Mukhopadhyay, both with the Virginia Bioinformatics Institute (VBI) at Virginia Tech.

Mukhopadhyay's lab specializes in the study of the anaerobic archaea, especially those that produce methane, and has a program on enzymes that utilize coenzyme F420.

Coenzyme F420 is rare in bacteria. Only the Actinobacteria, a group of aerobic microorganisms, contain F420. They include the mycobacteria, which generally live in the soil, except for Mycobacterium tuberculosis (Mtb), which causes TB.

In 1996, Purwantini as a graduate student in the laboratory of Lacy Daniels, then at the University of Iowa, discovered an enzyme that reduces F420 by adding two electrons and one proton to it, producing F420H2. This discovery raised the question, "What is the use of F420H2 in a mycobacterial cell?"

In 2000, the PathoGenesis Corporation developed a new anti-TB drug called PA-824 that is converted into an active form within the Mtb cells. Further research by others showed that this conversion requires F420H2. "But that would hardly seem to be why the bacterium makes F420H2," said Mukhopadhyay, assistant professor with VBI and adjunct assistant professor in the Departments of Biochemistry and Biological Sciences. "The organism must have a use for F420H2 that is advantageous to itself."

To find clues to how mycobacteria use F420H2, Purwantini, by this time a senior scientist at VBI, considered the battle between the human immune system and Mtb. Immune cells called macrophages engulf Mtb cells and bombard the pathogen with oxidizing compounds, such as hydrogen peroxide, superoxide, and nitric oxide (NO). In addition, macrophages convert NO into more deadly nitrogen dioxide (NO2). Mtb can withstand these attacks. Based on earlier research by others, there were indications that F420 is in some way responsible for this resilience of the Mtb.

Purwantini focused on the defense of Mtb against NO2 and found that F420H2 reacts with NO2, converting it into much less harmful NO. Purwantini and Mukhopadhyay theorized the following possibility: As a macrophage generates NO and then converts it to NO2, Mtb responds by converting NO2 back to the less toxic NO by using F420H2, buying time until the macrophage dies. Mtb then becomes dormant within the dead macrophage, lurking at the heart of the immune system until the system has a weak moment – perhaps as a result of HIV or poor nutrition.

To support this hypothesis, they conducted tests with Mycobacterium smegmatis, a nonpathogenic cousin of Mtb. Wildtype M. smegmatis survived almost as well in the presence of NO2 as it did in water. But when the researchers knocked out one of the genes required for the synthesis of F420, the bacterium became very sensitive to NO2. They got the same result by knocking out the gene that coded for the enzyme that produces F420H2. When those genes were restored, M. smegmatis regained its resistance to NO2.

Are there other examples for such a defense system? The team found an answer to that question in the literature. Research in early 1990's showed that gamma-tocopherol, a type of vitamin E that is found in certain food materials, converts NO2 to NO and thereby prevents transformation of normal human cells to malignant tumor cells by NO2.

Purwantini and Mukhopadhyay added that, "We know the biochemistry of F420 really well based on the work on methane-producing archaea by us and others and we were able to apply that knowledge to our work on the mycobacetria. It shows how basic science information from different fields can contribute to each other."

What's next? In the immediate future, Purwantini and Mukhopadhyay want to determine the chemical mechanism of the reaction. In the long-term, they want to develop a way to intervene in F420H2 production in the Mtb cell, which will make the organism more prone to being killed by the human immune system. They also speculate that the reaction that they have found may act as a sensor. Mtb could use this reaction to gauge whether a host is capable of making NO2 and therefore immuno competent. In the absence of this reaction, Mtb could wake up from dormancy and cause active TB. This idea has a parallel in methanogenic archaea where F420 has been proposed as a probe for assessing hydrogen availability.

Lacy Daniels, now professor of pharmaceutical sciences with the Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, said of Purwantini and Mukhopadhyay's continuation of his early work, "This discovery provides the first solid evidence that F420 is truly important for the ability of Mtb to cause disease. It will clearly stimulate efforts to study the role of F420 in animal disease models, and to study inhibitors of F420 metabolism as potential anti-TB drugs."

Robert White, associate professor of biochemistry at Virginia Tech and an expert on biosynthesis, structure, function, and genetics of the coenzymes, said of the research, "This work establishes a new function for a well studied coenzyme that is known to have only a limited distribution in microorganisms. It represents a fine example of basic scientific research providing leads for new drug targets."

Mukhopadhyay is corresponding author. Reach him at 540-231-8015 or biswarup@vt.edu. Learn more about his work at: www.vbi.vt.edu/faculty/personal_pages/biswarup_mukhopadhyay

AFTER THIS ARTICLE PUBLISHES, it will be available at www.pnas.org/cgi/doi/10.1073/pnas.0812883106

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>