Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coelacanth Genome Informs Land Vertebrate Evolution

18.04.2013
Genome Sequencing of the Living Coelacanth Sheds Light on the Evolution of Land Vertebrates

An historic fish, with an intriguing past, now has had its genome sequenced, providing a wealth of information on the genetic changes that accompanied the adaptation from an aquatic environment to land.


Illustration of the Africian coelacanth by Catherine Hamilton.

A team of international researchers led by Chris Amemiya, PhD, Director of Molecular Genetics at the Benaroya Research Institute at Virginia Mason (BRI) and Professor of Biology at the University of Washington, will publish “The African coelacanth genome provides insights into tetrapod evolution” April 18 as the cover article in Nature. The coelacanth genome was sequenced by the Genome Center at the Broad Institute of MIT and Harvard, and analyzed by an international consortium of experts.

Sequencing the coelacanth genome has been a long-sought goal and a major logistical milestone, says Dr. Amemiya. He and scientists throughout the world have campaigned for sequencing of the fish for over a decade. “Analysis of changes in the genome during vertebrate adaptation to land has implicated key genes that may have been involved in evolutionary transitions,” he says. These include those regulating immunity, nitrogen excretion and the development of fins, tail, ear, eye, and brain as well as those involved in sensing of odorants. The coelacanth genome will serve as a blueprint for better understanding tetrapod evolution.

“This is just the beginning of many analyses on what the coelacanth can teach us about the emergence of land vertebrates, including humans, and, combined with modern empirical approaches, can lend insights into the mechanisms that have contributed to major evolutionary innovations,” says Dr. Amemiya.

The coelacanth is critical to study because it is one of only two living lobe-finned fish groups that represent deep and evolutionarily informative lineages with respect to the land vertebrates. The other is the lungfish, which has an enormous genome that currently makes it impractical to sequence. The lobe-finned fishes are genealogically placed in-between the ray-finned fishes (such as goldfish and guppies) and the tetrapods − the first four-limbed vertebrates and their descendants, including living and extinct amphibians, reptiles, birds and mammals. A lobe-finned ancestor(s) underwent genomic changes that accompanied the transition of life in an aquatic environment to life on land. The coelacanth is undeniably a fish, however, phylogenetic analyses show that its genes are more like those of tetrapods than of ray-finned fishes. Additionally, coelacanth genes evolve at a considerably slower rate than those of tetrapods, a fact that is coincident with its apparently slow rate of morphological change.

“For evolutionary biologists the coelacanth is an iconic animal, as familiar as Darwin's finches on the Galapagos,” says Toby Bradshaw, PhD, Professor and Chair, Department of Biology, University of Washington. “This paper by Chris and colleagues gives us our first comprehensive look at the coelacanth's place in our evolutionary history, and provides fascinating insights into the specific vertebrate genes involved in the critical transition from water to land − it seems that both loss and gain of gene function were required. I find the proposed gain-of-function changes in gene regulation for limb development particularly compelling, supported by experimental evidence that the lobed fins of the coelacanth really are akin to prototypical legs. Making legs from fins is a wonderful example of Francois Jacob's observation that ‘evolution is a tinkerer, not an engineer.’” Adds Gerald Nepom, MD, PhD, Director of the Benaroya Research Institute, "This work represents a major accomplishment by a large and talented group of investigators, opening a new book of knowledge about adaptation that is now available to all scientists who want to better understand our complex genetic origins."

Genome sequencing is a laboratory and computational process that determines the complete DNA sequence of an organism's genome. Deciphering the genetic makeup of the coelacanth provides valuable clues for biologists studying the evolution of vertebrates. It was an international sensation when a living specimen of the coelacanth was first discovered in l938 as this lineage of fish was thought to have gone extinct 70 million years ago. The living coelacanth has many anatomical similarities with its fossil relatives and seems to have undergone seemingly little morphological change since the Devonian period approximately 360 million years ago. It still possesses what many would consider to be a prehistoric appearance, and, as for many similar species that do not show much change over long evolutionary periods, is often dubbed a "living fossil." The relationship of the slow rate of evolution of its genes and its morphological appearance remains unknown and largely speculative. Today, coelacanths are on the endangered species list and biological tissues can only be obtained from expired animals that have been caught accidentally by fishermen.

In addition to this landmark genome paper in Nature, several companion papers are being edited by Drs. Amemiya and Axel Meyer for publication in a special open access coelacanth genome issue of the Journal of Experimental Zoology (Molecular and Developmental Evolution).

About Benaroya Research Institute at Virginia Mason

Benaroya Research Institute at Virginia Mason (BRI), founded in 1956, is an international leader in immune system and autoimmune disease research, translating discoveries to real life applications. Autoimmune diseases happen when the immune system, designed to protect the body, attacks it instead. BRI is one of the few research institutes in the world dedicated to discovering causes and cures to eliminate autoimmune diseases such as Type 1 diabetes, multiple sclerosis, arthritis and many others. Visit BenaroyaResearch.org or Facebook/BenaroyaResearch for more information about BRI, clinical studies and the more than 80 different types of autoimmune diseases.

BRI employs more than 250 scientists, physician researchers and staff with a research volume of nearly $40 million in 2012, including grants from the National Institutes of Health, the National Science Foundation, the U.S. Department of Defense and JDRF.

Kay Branz | Newswise
Further information:
http://www.benaroyaresearch.org

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>