Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coating approach clears up fingerprints

12.05.2010
CSI notwithstanding, forensics experts cannot always retrieve fingerprints from objects, but a conformal coating process developed by Penn State professors can reveal hard-to-develop fingerprints on nonporous surfaces without altering the chemistry of the print.

"As prints dry or age, the common techniques used to develop latent fingerprints, such as dusting or cyanoacrylate -- SuperGlue -- fuming often fail," said Robert Shaler, professor of biochemistry and molecular biology and director of Penn State's forensic sciences program.

This happens because most of the techniques currently used for developing fingerprints rely on the chemistry of the print. Fingerprints are made up of a mixture of secretions from the body that reacts with different chemicals to form a visible or fluorescent product. Infrared and x-ray imaging also target specific chemicals left behind by the ridges and valleys in the skin.

"Lots and lots of processes take advantage of the chemistry of fingerprints," said Shaler. "This approach looks at the geometry of the fingerprints."

The conformal coating applications suggested by Shaler and Akhlesh Lakhtakia, Charles Godfrey Binder Professor in engineering science and mechanics, use the physical properties of the fingerprint, not the chemistry of the substances left behind. In fact, the researchers believe that even after the fingerprints are developed using the coating, forensics experts could sample the fingerprint material to determine specifics about the person who left the prints.

"The body chemistry of the person who left the fingerprint can tell us some things," said Shaler. "If the suspect is older or younger or a lactating mother, for example."

The researchers used a form of physical vapor deposition -- a method that uses a vacuum and allows vaporized materials to condense on a surface creating a thin film. Normally, the deposition process requires exceptionally clean surfaces because any speck of dust or grease on the coated surface shows up as a deformity. However, with fingerprints, the point is to have the surface material's ridges and valleys -- topography -- show up on the new surface so analysts can read them using an optical device without the necessity of chemical development or microscopy.

"This approach allows us to look at the topography better and to look at the chemistry later," said Shaler. "We wouldn't have thought of this by ourselves, but we could do it together."

One benefit of this approach would be the ability to retrieve fingerprints off fragments from incendiary or explosive devices and still be able to analyze the chemicals used in the device.

The specific method used is a conformal-evaporated-film-by-rotation technique developed to create highly accurate copies of biological templates such as insect eyes or butterfly wings. Both are surfaces that have nanoscale variations.

"It is a very simple process," said Lakhtakia. "And fingerprints are not nanoscale objects, so the conformal coating is applied to something big by nanotechnology standards."

The researchers tested two materials for coating, magnesium flouride and chalcogenide glass -- a combination of germanium, antimony and selenium. The coating material is heated in a vacuum, while the artifact to be coated is rotated fairly quickly to allow deposition over the entire surface.

"We need to have a coating that is uniform as far as we can see," said Lakhtakia. "But we do not need much of a coating -- in the range of only a micron."

The researchers tried coating a variety of fingerprints on glass and even on tape. They coated pristine fingerprints and those that had been fumed with SuperGlue. In all cases, the coated fingerprints were usable.

Of course, like all approaches, this one can only be used on non-porous surfaces, surfaces that do not de-gas. The equipment used to deposit the coating is a laboratory device, but it can produce the coating in about 15 minutes. The researchers would like to design a portable device that could be brought to a crime scene and produce readable fingerprints on site.

"We are in the process of redesigning the chamber and looking not just at fingerprints, but at other objects," said Lakhtakia. "These would include bullets, cartridges, footprints, bite marks and lip impressions." Shaler and Lakhtakia have filed a provisional patent application on this application.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>