Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coating approach clears up fingerprints

12.05.2010
CSI notwithstanding, forensics experts cannot always retrieve fingerprints from objects, but a conformal coating process developed by Penn State professors can reveal hard-to-develop fingerprints on nonporous surfaces without altering the chemistry of the print.

"As prints dry or age, the common techniques used to develop latent fingerprints, such as dusting or cyanoacrylate -- SuperGlue -- fuming often fail," said Robert Shaler, professor of biochemistry and molecular biology and director of Penn State's forensic sciences program.

This happens because most of the techniques currently used for developing fingerprints rely on the chemistry of the print. Fingerprints are made up of a mixture of secretions from the body that reacts with different chemicals to form a visible or fluorescent product. Infrared and x-ray imaging also target specific chemicals left behind by the ridges and valleys in the skin.

"Lots and lots of processes take advantage of the chemistry of fingerprints," said Shaler. "This approach looks at the geometry of the fingerprints."

The conformal coating applications suggested by Shaler and Akhlesh Lakhtakia, Charles Godfrey Binder Professor in engineering science and mechanics, use the physical properties of the fingerprint, not the chemistry of the substances left behind. In fact, the researchers believe that even after the fingerprints are developed using the coating, forensics experts could sample the fingerprint material to determine specifics about the person who left the prints.

"The body chemistry of the person who left the fingerprint can tell us some things," said Shaler. "If the suspect is older or younger or a lactating mother, for example."

The researchers used a form of physical vapor deposition -- a method that uses a vacuum and allows vaporized materials to condense on a surface creating a thin film. Normally, the deposition process requires exceptionally clean surfaces because any speck of dust or grease on the coated surface shows up as a deformity. However, with fingerprints, the point is to have the surface material's ridges and valleys -- topography -- show up on the new surface so analysts can read them using an optical device without the necessity of chemical development or microscopy.

"This approach allows us to look at the topography better and to look at the chemistry later," said Shaler. "We wouldn't have thought of this by ourselves, but we could do it together."

One benefit of this approach would be the ability to retrieve fingerprints off fragments from incendiary or explosive devices and still be able to analyze the chemicals used in the device.

The specific method used is a conformal-evaporated-film-by-rotation technique developed to create highly accurate copies of biological templates such as insect eyes or butterfly wings. Both are surfaces that have nanoscale variations.

"It is a very simple process," said Lakhtakia. "And fingerprints are not nanoscale objects, so the conformal coating is applied to something big by nanotechnology standards."

The researchers tested two materials for coating, magnesium flouride and chalcogenide glass -- a combination of germanium, antimony and selenium. The coating material is heated in a vacuum, while the artifact to be coated is rotated fairly quickly to allow deposition over the entire surface.

"We need to have a coating that is uniform as far as we can see," said Lakhtakia. "But we do not need much of a coating -- in the range of only a micron."

The researchers tried coating a variety of fingerprints on glass and even on tape. They coated pristine fingerprints and those that had been fumed with SuperGlue. In all cases, the coated fingerprints were usable.

Of course, like all approaches, this one can only be used on non-porous surfaces, surfaces that do not de-gas. The equipment used to deposit the coating is a laboratory device, but it can produce the coating in about 15 minutes. The researchers would like to design a portable device that could be brought to a crime scene and produce readable fingerprints on site.

"We are in the process of redesigning the chamber and looking not just at fingerprints, but at other objects," said Lakhtakia. "These would include bullets, cartridges, footprints, bite marks and lip impressions." Shaler and Lakhtakia have filed a provisional patent application on this application.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>