Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coating approach clears up fingerprints

12.05.2010
CSI notwithstanding, forensics experts cannot always retrieve fingerprints from objects, but a conformal coating process developed by Penn State professors can reveal hard-to-develop fingerprints on nonporous surfaces without altering the chemistry of the print.

"As prints dry or age, the common techniques used to develop latent fingerprints, such as dusting or cyanoacrylate -- SuperGlue -- fuming often fail," said Robert Shaler, professor of biochemistry and molecular biology and director of Penn State's forensic sciences program.

This happens because most of the techniques currently used for developing fingerprints rely on the chemistry of the print. Fingerprints are made up of a mixture of secretions from the body that reacts with different chemicals to form a visible or fluorescent product. Infrared and x-ray imaging also target specific chemicals left behind by the ridges and valleys in the skin.

"Lots and lots of processes take advantage of the chemistry of fingerprints," said Shaler. "This approach looks at the geometry of the fingerprints."

The conformal coating applications suggested by Shaler and Akhlesh Lakhtakia, Charles Godfrey Binder Professor in engineering science and mechanics, use the physical properties of the fingerprint, not the chemistry of the substances left behind. In fact, the researchers believe that even after the fingerprints are developed using the coating, forensics experts could sample the fingerprint material to determine specifics about the person who left the prints.

"The body chemistry of the person who left the fingerprint can tell us some things," said Shaler. "If the suspect is older or younger or a lactating mother, for example."

The researchers used a form of physical vapor deposition -- a method that uses a vacuum and allows vaporized materials to condense on a surface creating a thin film. Normally, the deposition process requires exceptionally clean surfaces because any speck of dust or grease on the coated surface shows up as a deformity. However, with fingerprints, the point is to have the surface material's ridges and valleys -- topography -- show up on the new surface so analysts can read them using an optical device without the necessity of chemical development or microscopy.

"This approach allows us to look at the topography better and to look at the chemistry later," said Shaler. "We wouldn't have thought of this by ourselves, but we could do it together."

One benefit of this approach would be the ability to retrieve fingerprints off fragments from incendiary or explosive devices and still be able to analyze the chemicals used in the device.

The specific method used is a conformal-evaporated-film-by-rotation technique developed to create highly accurate copies of biological templates such as insect eyes or butterfly wings. Both are surfaces that have nanoscale variations.

"It is a very simple process," said Lakhtakia. "And fingerprints are not nanoscale objects, so the conformal coating is applied to something big by nanotechnology standards."

The researchers tested two materials for coating, magnesium flouride and chalcogenide glass -- a combination of germanium, antimony and selenium. The coating material is heated in a vacuum, while the artifact to be coated is rotated fairly quickly to allow deposition over the entire surface.

"We need to have a coating that is uniform as far as we can see," said Lakhtakia. "But we do not need much of a coating -- in the range of only a micron."

The researchers tried coating a variety of fingerprints on glass and even on tape. They coated pristine fingerprints and those that had been fumed with SuperGlue. In all cases, the coated fingerprints were usable.

Of course, like all approaches, this one can only be used on non-porous surfaces, surfaces that do not de-gas. The equipment used to deposit the coating is a laboratory device, but it can produce the coating in about 15 minutes. The researchers would like to design a portable device that could be brought to a crime scene and produce readable fingerprints on site.

"We are in the process of redesigning the chamber and looking not just at fingerprints, but at other objects," said Lakhtakia. "These would include bullets, cartridges, footprints, bite marks and lip impressions." Shaler and Lakhtakia have filed a provisional patent application on this application.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>